Loads Calculations

58
Loads Dead loads Imposed loads floor roof Determining load per m and m2 Wind

description

Load Calculations

Transcript of Loads Calculations

  • Loads

    Dead loadsImposed loads floor roofDeterminingloadpermandm2Wind

  • Structurestransmitloadsfromoneplacetoanother

    Wheredoloadscomefrom

    Deadloads-permanentandstationary

    StructureitselfPlantandequipment

    Someroughfigures(notethatvaluesaresubjecttovariationdependingonspecifcmaterialtype)Alsonotevaluesareforcesperunitvolumenotmassperunitvolume.

    UnitWeightsofbaiscconstructionmaterials kN/m3Aluminium 24Brick 22Concrete 24Steel 70Timber 6

  • Precastconcretebeamlength

    1.Calculateweightofbeamperunitlength.2.Calculatetotalweightofbeaminitis10.5m.

    Firstcrosssectionalareaofbeam=

    (0.6x0.25)-(0.4x0.15)=0.09m2

    Fromtableunitweightofconcrete=24kN/m3

    Weightperunitlength=0.09x24=2.16kN/m

    Totalweight=2.16x10.5=22.68kN

  • Oftenwearedealingwithsheetmaterialsorweknowalayerthicknessoffloororroofbuildup.

    Figureshereareperunitarea

    Againwhenusingthesetypeofchartssomecareisneededtoensureyouhavethecorrectfigure,orthatitcorrespondswithyourdesign.

    Unitweightofbasicsheetmaterials kN/m2Asphalt(19mm) 0.45Aluminiumroofsheeting 0.04Glass(singleglazing) 0.1Plasterboardandskim 0.15Raftersbattensroofingfelt 0.14Sand/cementscreed(25mm) 0.6Slates 0.6Timberfloorboards 0.15Plasteronwallface 0.3

  • CalculatethedeadloadinkN/m2ofthefollowingfloorbuildup:

    Timberfloorboards40mmsand/cementscreed125mmreinforcedconcreteslab

    timberfloorboards =0.15screed =0.6x40/25=0.96concreteslab =0.125x24=3.00

    dead load /m2 =4.11kN/m2

  • ifwearedealingwithawallactingonabeamweareinterestedinloadperlinearunitofthebeam

  • Inthisexamplecalculatetheloadpermetreonthebeam.Thebuildupisadoubleglazedwindowonacavitywallof102.5mmbrickouterfaceand100mmplasteredlightweightblock-workwhichis12kN/m3.

    brickwork =1.2x0.1025x22 =2.71blockwork =1.2x0.1x12 =1.44plaster =1.2x0.3 =0.36doubleglazing =2x1.3x0.1 =0.26

    loadonbeam =4.77kN/m

  • Imposedloads-orliveloads,movableloadsthatactonthestructurewhenitisinuse.

    People,furniture,cars,computersandmachineryareallimposedloads.

    NormallyweconsiderimposedloadsasfloorandroofloadsTypicalfloorloads kN/m2Artgalleries 4.0Bankinghalls 3.0bars 5.0Carparks 2.5Classrooms 3.0Churches 3.0Computerlabs 3.5Dancehalls 5.0Factoryworkshop 5.0Foundaries 20.0Hotelbedrooms 2.0Offices(general) 2.5Offices(filing) 5.0Privatehouses 1.5Shops 4.0Theatres(fixedseats) 4.0

  • Ifabarshouldbedesignedwithliveloadof5.0kN/m2andifanaveragepersonis80kghowmanypeopleareexpectedtobestandinginonesquaremetreoffloor?

    Forceexertedbyoneperson =80x9.81 =785NNumberofpeopleperm2 =5000/785 =6.4people/m2

    equivalentlyifyourhouseisdesignedwith1.5kN/m2andthetotalareawas22m2howmanypeoplecouldyouinvitetoaparty?

    Forceexertedbyoneperson =785NNumberofpeopleperm2 =1500/785 =1.9people/m2Totalnumberofpeopleatparty =1.9x22 =42andabit.

    certaintypesofdancingcancausedynamiceffectsthatincreasetheeffectofload.

  • Calculatingimposedroofloads.

    Whatyouneedtoknow:

    1.Isaccesstotheroofprovided?(aloadofadjacentfloorareaisrequired)2.Predominantloadissnow. whichisdependanton geographicallocation heightabovesealevel shapeofroof windthatredistributessnowintodrifts

  • EstimatinggroundsnowloadsinCanada.InfofromCanadianCryosphericInformationNetworkFindworstcasedepthandmultiplybydensity(kg/m3)and9.81

    TablesinNationalBuildingCodeprovidefurtherdetails

  • InUKsnowloadvariesfrom0.3kN/m2onsouthcoastto3.0kN/m2inScotland

    CalculatingasnowloadinCanada.NationalBuildingCodePart44.1.7.

    S=Ss (CbxCwxCsxCa)+Sr

    Snowloadperm2

    groundsnowloadinkPa(kN/m2)

    roofsnowloadfactor=0.8???

    windexposurefactor

    slopefactor

    accumulationfactor

    associatedrainload

    NationalBuildingCodeofCanadaappendixcfortablesofclimaticinformation

  • windexposurefactor

    is1.0butcanbereducedto0.75orinexposedareasnorthoftreelineto0.5 if buildingisanexposedlocationandexposedonallsides noobstructionsaroundbuilding noobstructionsonroofsuchasparapet snowcannotdriftontorooffromadjacentsurfaces

    slopefactorbasedonroofangleaandsurfacetype. is1.0ifa30 is0ifa>70

    ifroofisaslipperysurface(wheresnowandiceslideoff)

    slopefactor is1.0ifa15 is0ifa>60

    NationalBuildingCodeofCanadaappendixcfortablesofclimaticinformation

  • accumulationfactor

    is1.0 exceptwhen forlargeflatroofswhen 1.2x[1-(30/l)2]butnotlessthan1.0forroofswithwindfactor=1.0 1.6x[1-(120/l)2]butnotlessthan1.0forroofswithwindfactor=0.75or0.5

    w=smallerplandimension L=largerplandimension and lis2xw-(w2/L)inmetres

    canbeassignedothervalueswhen: roofshapesarearched,curvedordomes snowloadsinvalleys snowdriftsfromanotherroof projectionsonadjacentroofs snowslidingordrainagefromadjacentroofs

  • Theresmore:

    inrealityfullandpartialloadinghastobeconsidered

    Inadditiontotheloadcalculationaboveroofsofslopelessthan15andarchedorcurvedroofsmustbedesignedwithaccumulationfactor1.0ononeportionwhilehalfthatloadisappliedtotheremainder.

  • Calculatesnowloadonthisroofstructure

    Whatisthesnowloadpermetrelengthoftruss?

    Whatisthetotalsnowloadononerooftruss?

    Whatistheloadpermetreonthesupportingwall?Assumethatloadsfromtrussesareevenlydistributed

  • CalculatesnowloadforHalifaxS

    groundsnowHalifax=1.7

    snowloadfactor=0.8

    windexposurefactor=1.0

    slopefactor=(70-40)/40=0.75

    accumulationfactor=1.0

    rainloadHalifax=0.5

    S=1.7x(0.8x1x0.75x1)+0.5

    S=1.52kN/m2

    Snowloadperm2

    groundsnowloadinkPa(kN/m2)

    roofsnowloadfactor=0.8???

    windexposurefactor

    slopefactor

    accumulationfactor

    associatedrainload

    S=Ss (CbxCwxCsxCa)+Sr

  • Trussesareat0.6mcentres

    Sosnowloadpermetrelengthoftrussis:

    0.6x1.52=0.9kN/m

    Noteloadisverticalso1mdimen-sionismeasuredhorzontally

    For7mtrussloadis

    7x0.9=6.4kN

  • Loadpermonwall=1.52x3.5=5.32kN/m

  • Windloadsactnormal(orperpendicular)tobuildingsurfaces

    windscancausepressureorsuction.

    Forthisreasonbuildingstructuresmustresisthorizontalforcesaswellasverticalforces.

    Inadditionsomelightweightstructurescanbesubjecttoupliftforcesfromthewindsoneedtobead-equatelyhelddown.

    Windloadslikesnowloadsvarydependingon:

    geographiclocation degreeofexposure buildingheightandsize buildingshape winddirectioninrelationstostructure positiveornegativepressuresinthebuilding

  • Fastermovingaircreateslowerpressure(bernoullieffect)asinplanewings.

    Thesameprinciplecausesforcestoactonbuildingsurfaces.

  • Structureforresistingwindloads

  • Theseprinciplesshouldbewellunderstoodbynowifnot

    Lookat: FrancisChing.BuildingConstructionIllustrated

    EdwardAllen.ArchitectsStudioCompanion

  • Forstructuraldesignitisoftennecessarytoconsiderseveralloadcasesduetothewindblowingfromdifferentdirections.

    DesigningabuildinginHalifaxcalculatingwindloads.NationalBuildingCodeofCanadaPart44.1.8.

    p=qxCexCgxCp

    externalpressureactingstaticallyandnormaltosurface

    referencevelocitypressure

    exposurefactor

    gusteffectfactor

    externalpressurecoefficient

    NationalBuildingCodeofCanadaappendixcfortablesofclimaticinformation

  • netpressureonasurfaceisthedifferencebetweeninternalandexternal

    similartoexternalpressureinternalpressureiscalculatedaccordingtotheNBC

    p=qxCexCgxCp

    internalpressureactingstaticallyandnormaltosurface

    referencevelocitypressure

    exposurefactor

    gusteffectfactor

    internalpressurecoefficient

  • referenceveloctypressurethreeareshownintable1in10,1in30,1in100

    theseareprobabilitiesofpressureoccuring

    so1in10isusedforcladdingandstucturaldesignforvibrationanddeflection

    1in30forstructuralstrength

    post-disasterbuldingsusethe1in100pressurevalues.

    exposurefactor

    exposureincreasewithheightheightm exposurefactor>0and6and12and20and30and44and

  • gustfactor

    1.0or2.0forinternalpressurestobefoundsomewhereinthe500pagesofappendixA!! welluse1.0fornow.

    2.0forthebuildingasawholeandmainstructuralmembers

    2.5forsmallelements

    externalandinternalpressurecoefficients

    againappendixAwelluse1.0fornow.

  • Forcesduetowindonsimplebuilding

    externalpressurep=qxCexCgxCp

    1in30yearPressureHalifax=0.52kPa(kN/m2)

    Wallsbelow6msoexposurefactoris0.9

    Gustfactor=2.0externaland1.0internal

    Pressurecoefficient=1.0

    externalp=0.52x0.9x2.0x1.0=0.936kN/m2

    internalp=0.52x0.9x1.0x1.0=0.468kN/m2

    so0.936-0.468=0.468kN/m2actingnormaltoverticalsurfaceswindward

    and0.936+0.468=1.4kN/m2leeward

  • Forcesduetowindonsimplebuilding

    externalpressurep=qxCexCgxCp

    1in30yearPressureHalifax=0.52kPa(kN/m2)

    Roofabove6msoexposurefactoris1.0

    Gustfactor=2.0externaland1.0internal

    Pressurecoefficient=1.0

    externalp=0.52x1.0x2.0x1.0=1.04kN/m2

    internalp=0.52x1.0x1.0x1.0=0.52kN/m2

    1.04kN/m2actingnormaltoverticalsurfacesatrooflevel

    normaltoroof1.04xSin(40)=0.67 windward=0.67-0.52=0.15kN/m2 leeward=0.67+0.52=1.19(suction)

  • Nextup:Acoupleofotherloadtypes(toknowabout)UniformandpointloadsSafetyfactorsCalculatingloadonbeamsLoadpaths

    PinJointedstructures

  • A couple of other load types (to know about)Uniform and point loadsSafety factors Calculating load on beamsLoad paths

  • Hydrostatic pressure loads from soils and liquids

    Increases linearly with depth.

  • Application of safety factors to loads

    Loads discussed are realistic estimates of loads or characteristic loads

    when checking ultimate strength characteristic loads are increased by multiplying by a safety factor.

    The result is the design load.Safety factors

    load combination dead imposed winddead and imposed 1.4 or 1.0 1.6 -dead and wind 1.4 or 1.0 - 1.4dead, imposed and wind 1.2 1.2 1.2

  • For example

    to obtain the maximum compressive design in the support at Btwo load combinations should be checked and the larger value used

    1.4 x dead + 1.6 imposed

    or

    1.2 x dead + 1.2 x imposed + 1.2 wind

    to obtain maximum tensile design load in the support at A

    we need to minimise the effect of the dead and imposed loads by using

    1.0 x dead + 1.4 x wind

    A B

    wind

    imposed roof

    imposed floor

    dead load

  • Point load (kN)

    Uniformly distributed load (kN/m)

  • Calculating loads on beams

    Example

    Building type - officeFloor construction = 4.11kN/m2Perimeter wall construction = 4.77kN/m2self weight of beams = 0.6 kN/m

    safety factors are 1.4 for dead load and 1.6 for live load to find design load

    design load kN/m2floor 1.4 x 4.11 5.75wall 1.4 x 4.77 6.68beams 1.4 x 0.6 0.84imposed 1.6 x 2.5 4.00

    total design floor load = 5.75 + 4.00 = 9.75kN/m2

    B6

  • Beam B1 (8m span)supports a total width of 6m

    load from floor = 9.75 x 6 = 58.50kN/mself weight of beam = 0.84 kN/m

    design UDL = 59.34 kN/m

    symmetry indicates reactions will be equal

    reaction = (59.34 x 8) / 2 = 237.4 kN

    beam B2 is the same as B1

    B6

  • Beam B3 suports a 3m width of floor plus the perimeter wall

    Load from floor = 3 x 9.75 = 29.25 kN/mload from wall = 6.68kN/mself weight of beam = 0.86kN/m

    total design UDL = 36.79kN/m

    symmetry indicates reactions will be equal

    reaction = (36.9 x 8) /2 = 147.6kN

  • Beam B4 has same UDL as B1 and B2 but span is 6m

    B6

  • Beam B6

    Supports perimeter wall and a point load from the reaction of B2.

    Load from wall = 6.68kN/mself weight of beam = 0.86kN/m

    design UDL = 7.54kN/m

    design point load = 237.4kN

    Reaction from symmetry

    = ((7.54 x 12) + 237.4) / 2 = 163.9kN

    B6

  • Now work out reactions for B5

  • Load paths

  • Working through load path for a simple sign.

  • 03Loads03LoadsPart2