LLouise'09

download LLouise'09

of 42

Transcript of LLouise'09

  • 8/8/2019 LLouise'09

    1/42

    Self-Aligning Monomers forLow Shrinkage, Biomedical

    Composites

    H. Ralph RawlsB. K. Norling, QIAN Wang, Nga M. Tang, P. Longo

    University of TexasUniversity of Texas

    Health Science Center at San AntonioHealth Science Center at San Antonioandand

    S.T. Wellinghoff,B.F. Furman & D.P. NicolellaSouthwest Research Institute, San Antonio, TexasSouthwest Research Institute, San Antonio, Texas

    Composites at Lake Louise, OctoberComposites at Lake Louise, October20092009

  • 8/8/2019 LLouise'09

    2/42

    UTHSCSA Biomaterials 2

    Problems withProblems withDental CompositesDental Composites

    PulpPulpPulpPulp

    SecondaryCariesSecondaryCaries

    Pulp

    Infection

    Pulp

    Infection

    Wear,

    fracture,

    Leakage,

    Staining

    Wear,

    fracture,

    Leakage,

    Staining

    PulpPulpPulpPulp

    Composite

    ADRS project NIH supported

    UTHSCSA & SwRI

    Radiopaque

    Nano Fillers

    Radiopaque

    Nano Fillers

    Solutions we are developing:Ultra-small,nanometer-sized fillers toreduce wear & impart high translucency

    Metal oxide fillers for radiopacity

    Liquid-

    Crystal

    Monomer

    Liquid-

    Crystal

    Monomer

    Liquid crystal monomers toreduce cure shrinkage and

    viscosity

    SolutionsSolutions

    Color InstabilityColor InstabilityCure ShrinkageCure Shrinkage

    Major problems:Cure shrinkage, wear, fracture &thermal expansion/contraction result inmarginal break-down

    This is followed by leakage,staining,secondary caries and, in the worst

    cases, pulp exposure and infection.Initial color and color instability

    Low Color,synergizing

    photo-sensitizers

    Low Color,synergizing

    photo-sensitizers

    Low Color, color stable initiatorsLow Color, color stable initiators

    Low Color, color stable initiatorsLow Color, color stable initiators

  • 8/8/2019 LLouise'09

    3/42

    Low Polymerization-Contraction

    via Liquid CrystalMonomers

    Strategy for reducing cure

    shrinkage in biomedical

    and engineering resins

  • 8/8/2019 LLouise'09

    4/42

    UTHSCSA Biomaterials 4

    Molecular Organization in

    Isotropic and Nematic Liquids

    Isotropic

    random

    Isotropic

    random

    Nematic

    Self-aligned

    Nematic

    Self-aligned

  • 8/8/2019 LLouise'09

    5/42

    UTHSCSA Biomaterials 5

    Liquid and Nematic-Liquid-Crystal Structures

    Ordinary, Isotropic, LiquidMonomers are randomly

    alignedwith no order

    Nematic Liquid-CrystalMonomers are aligned in one

    dimension

  • 8/8/2019 LLouise'09

    6/42

    UTHSCSA Biomaterials 6

    Liquid Crystal Dimethacrylate

    Monomers Have Rod-Like Structures

    OO

    OO

    OO

    O

    O

    R

    R = H, CH3n=1,5 n=1,5

    O OR

    n = 1n = 1 3-t-butyl 1,4-di(4-3-t-butyl 1,4-di(4-[meth][meth]acryloxy-hexaneoxy) benzoyloxy)-acryloxy-hexaneoxy) benzoyloxy)-

    benzenebenzene

  • 8/8/2019 LLouise'09

    7/42

    UTHSCSA Biomaterials 7

    C6-t-butyl-dimethacrylate MW = 743

    Bis-GMAMW = 513

    TEGDMA MW = 258

    Molecular Weight is Higherbut Viscosity is Much Less

  • 8/8/2019 LLouise'09

    8/42

    Nematic Liquid-Crystal Synthesis+1)

    100% NO2OO (CH2)6 OC

    O

    C

    O

    NO2

    2) + DMSO O C

    O

    O +

    C

    O

    O>90%

    NO2C

    O

    NO2 OH+ O(CH2)6C

    OTi(O Bu)4HO(CH2)6OH OH

    HO(CH2)6 OC

    O

    (CH2)6OHHO(CH2)

    O(CH2)6

    K+ - O(CH2)6OH

    OHO(CH2)6

    3)a) NaOH

    b) HClO C

    O

    OH100%

    4)Cl (CH2)6 O C

    O

    Cl 90%

    5) + HO OH

    C4H9

    C

    O

    O OC

    O

    >90%

    N

    HO(CH2)6

    O(CH2)6Cl

    LC at RT

    Cl(CH2)6O

    SOCl2

    6)H2O

    HMPANMP

    HO(CH2)6 O C

    O

    O OC

    O

    O(CH2

    )6

    OH(KBr)

    +

    CH 2=CCO(CH 2)6O

    CH 3

    O

    C

    O

    O OC

    O

    O(CH2)6OH OCC=CH 2

    CH 3

    O

    7)

    90% LC at RT

    CH 2=CCCl

    CH 3

    O CH 2=CCO(CH 2)6O

    CH 3

    O

    C

    O

    O OC

    O

    O(CH2)6OH

  • 8/8/2019 LLouise'09

    9/42

    UTHSCSA Biomaterials 9

    Polarized Light Microscopy

    of LC MonomersOriented Nematic

    25o C

    Isotropic State

    45o C

  • 8/8/2019 LLouise'09

    10/42

    UTHSCSA Biomaterials 10

    a or me ry:n i TransitionTemperatureIsotropic State

    > 46o C

    Oriented Nematic

    < 43o C

  • 8/8/2019 LLouise'09

    11/42

    UTHSCSA Biomaterials 11

    PolymerizationShrinkage vs.Time

    0

    1

    2

    3

    4

    5

    6

    7

    8

    910

    0 0.2 0.4 0.6 0.8 1

    Time (min)

    Experimental C6-LC diacrylate resin

    UnfilledBis-GMA based resin

  • 8/8/2019 LLouise'09

    12/42

    UTHSCSA Biomaterials 12

    Mechanism of Low ShrinkageMechanism of Low Shrinkagein Liquid Crystal Monomersin Liquid Crystal Monomers

    When LC monomer is converted topolymer, the alignment among molecules

    is disrupted and causes a small expansion

    LC Composites are pre-aligned andhighly compact.

    Thus very little shrinkage occurs whenmonomer is converted to polymer

  • 8/8/2019 LLouise'09

    13/42

    UTHSCSA Biomaterials 13

    0

    4

    8

    12

    16

    Commercial

    Resin

    LC6diacr-

    Unfilled

    Ivoclar-

    Tetric

    Vivadent's

    Heliomolar-s

    LC6diacr-

    Tetric

    M o d u l u s ( G P a )

    unfille Composite

    Liq CrLiqCrys

    HybriMicFill

    BisGbase

    p < 0.05

    *

    *

    **

    Modulus (rigidity) too Low

  • 8/8/2019 LLouise'09

    14/42

    UTHSCSA Biomaterials 14

    0

    40

    80

    120

    160

    Commercial

    Resin

    LC6diacr-

    Unfilled

    Ivoclar-Tetric Vivadent's

    Heliomolar-s

    LC6diacr-

    Tetric

    F l e x u r a l S t r e n g t h (M P a )

    unfille Composite

    Liq

    Cr

    Liq

    Cr Hybr

    MicrFill

    BisGbase

    *

    *

    **

    p < 0.05

    Strength too Low

  • 8/8/2019 LLouise'09

    15/42

    0

    20

    40

    60

    80

    100

    120

    GTE

    10%

    IBM

    w/GTE

    20%

    IBM

    w/GTE

    10%

    TMPT

    MAw/

    GT

    E

    20%

    TMPT

    MAw/

    GTE

    LCM

    10%

    IBM

    w/LCM

    20%

    IBM

    w/LCM

    10%

    TMPT

    MAw/

    LCM

    Flexure

    Strength

    (MPa)

    0

    20

    40

    60

    80

    100

    120

    GTE LCM

    10%

    IBM

    20%

    IBM

    10%

    TMPT

    MA

    20%

    TMPT

    MA

    FlexureStreng

    th(MPa)

    Bis-GMA Resin Liquid Crystal Resins

    Add Other Monomers:Flexure Strength Increases

    IBM = iso-bornylmethacrylateIBM = iso-bornylmethacrylate

    LC + IBMLC + IBMGTEGTE LCLCLC +

    TMPTMALC +

    TMPTMA

  • 8/8/2019 LLouise'09

    16/42

    UTHSCSA Biomaterials 16

    Modulus (rigidity) Increases

    0

    500

    10001500

    2000

    2500

    3000

    LCM

    Mod

    ulus(M

    Pa)

    0

    500

    1000

    1500

    2000

    2500

    3000

    GTE LCMLCM

    10%

    IBM

    20%

    IBM

    10%

    TMPT

    MA

    20%

    TMPT

    MA

    Modu

    lus(M

    Pa)

    Bis-GMA Liquid Crystal Resins

    LC + IBMLC + IBMGTEGTE LCLCLC +

    TMPTMALC +

    TMPTMA

  • 8/8/2019 LLouise'09

    17/42

    UTHSCSA Biomaterials 17

    Bis-GMA based 8 vol%

    Liquid-Crystal 2 vol%Liq-Cryst + IBM 2 vol%

    Cure Shrinkage

    Remains Low

    BUT

    Cure Rate is TooSlow!!

    BUT

    Cure Rate is TooSlow!!

  • 8/8/2019 LLouise'09

    18/42

    UTHSCSA Biomaterials 18

    LCMCure Ratei

    Slow

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    0 50 100 150 200 250 300

    Exposure Time (seconds)

    Bis GMA-basedBis GMA-based

    Liq. CrystalLiq. Crystal

  • 8/8/2019 LLouise'09

    19/42

    UTHSCSA Biomaterials 19

    0 %

    1 0 %

    2 0 %

    3 0 %

    4 0 %

    5 0 %

    6 0 %

    7 0 %

    0 5 0 1 0 01 5 02 0 02 5 03

    E x p o s u r

    Bis-GMA basedBis-GMA based

    Liq. CrystalLiq. Crystal

    Longer exposure times are required for LiquidLonger exposure times are required for LiquidCrystals to reach the same degree of cure asCrystals to reach the same degree of cure as

    GTEGTE

    Longer exposure times are required for LiquidLonger exposure times are required for LiquidCrystals to reach the same degree of cure asCrystals to reach the same degree of cure as

    GTEGTE

    20

    min

  • 8/8/2019 LLouise'09

    20/42

    Curing Systems &Setting Mechanisms

    Strategy for fast cure, lowcolor, color stable resins

  • 8/8/2019 LLouise'09

    21/42

    UTHSCSA Biomaterials 21

    Photoiniator SystemPhotoiniator System

    CQQ Camphor-Quinone

    CQCQabsorbs BLUEBLUElight and photosensitizesDMAEMADMAEMA to form free radicals and initiatepolymerization

    DMAEMAMAEMAN,N-Dimethyl-AminoEthyl

    Methacrylate

    +

  • 8/8/2019 LLouise'09

    22/42

    UTHSCSA Biomaterials 22

    Onium-ion Photoinitiator:OPPIOPPI

    p-octyloxy-phenyl-phenyliodonium hexafuoro antimonate

    I+

    OPPI accelerates both LCM c re

  • 8/8/2019 LLouise'09

    23/42

    UTHSCSA Biomaterials 23

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    0 50 100 150 200 250 300

    Exposure Time (seconds

    Liq CrystalLiq Crystal

    Liq Crystal + OPPIOPPILiq Crystal +OPPIOPPI

    Bis-GMA basedBis-GMA based

    + . . . it Reduces YellowColor+ . . . it Reduces YellowColor

    OPPI accelerates both LCM curerate & Deg. of Conversion

  • 8/8/2019 LLouise'09

    24/42

    UTHSCSA Biomaterials 24

    Single LC Monomer

    Shortcomings

    Crystallize in the present of fillers

    Inadequate tsn - tn i range:

    Shrinkage increases as t approaches

    the n i transformation temperature,

    ~45C

    Mouth temp. shrinkage > RT shrinkage

  • 8/8/2019 LLouise'09

    25/42

    Blended Liquid

    Crystal MonomerSystems

    SHELF-LIFE:Strategy to prevent Liquid

    Crystals from crystallizing in the

    presence of reinforcing fillers

    S l ti LC M

  • 8/8/2019 LLouise'09

    26/42

    UTHSCSA Biomaterials 26

    Solution: LC-Monomer

    Blends

    Blends prevent 3-dimensional ordernucleated by inorganic fillers

    long-term stability against crystallization

    Co-synthesize a mixture of related

    monomers in a single pot

    S b l d Adi l

  • 8/8/2019 LLouise'09

    27/42

    UTHSCSA Biomaterials 27

    Sebacyl and Adipyl

    t-butyl

    O

    O

    O

    CH3

    O

    O

    O O

    O

    O

    O

    O

    O

    O

    O

    O H

    O

    CH3

    H

    H

    H

    MW = 943

    16 component Liquid

  • 8/8/2019 LLouise'09

    28/42

    UTHSCSA Biomaterials 28

    O

    R2,1

    O

    O

    O

    R3,2

    R3,1

    CH2

    O

    R4 O

    O

    O

    O

    O

    O

    O

    R2,2R1

    O

    O

    O

    R3,1

    R3,2

    CH2

    O

    R4

    n

    R4-CH

    3; R

    3,2R

    3,1-H; R

    2,2-(CH

    2)

    4or (CH

    2)

    8; R

    1-tC

    4H

    9or CH

    3

    A2 S2 MA2 TA2 MAS TAS MS2 TS2 N > 2

    RT min 3.16 3.94 5.92 8.52 13.39 21.14 33.10 55.21 MR

    Mole % 1.2 0.8 8.4 6.5 22.8 17.9 17.3 12.3 12.8

    bis (oxyethyl methacrylate)bis (oxyethyl methacrylate) adipoateadipoate, A, A22

    andand sebacoatesebacoate, S, S22

    TT andand MM represent Rrepresent R11-tC-tC44HH99 , CH, CH33 ,,AA andand SS represent Rrepresent R

    2,22,2-(CH-(CH

    22))44

    and (CHand (CH22))88

    Q u i c k T i m e a n d ad e c o m p r e s s o r

    a r e n e e d e d t o s e e t h i s p i c t u r e .

    16-component LiquidCrystal Monomer Blend

    M t i l d th d

  • 8/8/2019 LLouise'09

    29/42

    UTHSCSA Biomaterials 29

    Materials and methods

    16-component blend was initiated with 1% CQand 2% DMAEMA.

    75% 1 micron Ba-Glass filler, stored refrigerated. A control mixture ofBisGMA 37.5% -TEGDMA

    37.5% and BisEMA 25% was used forcomparison.

    Degree of conversion and initial cure rate weremeasured by FTIR

    Volumetric shrinkage was measured in an Acuvol Transverse strength and moduli were measured

    on 2 mm square beams in an Instron/MTS

    C C t ti

  • 8/8/2019 LLouise'09

    30/42

    UTHSCSA Biomaterials 30

    Cure Contraction

    C Ch t i ti

  • 8/8/2019 LLouise'09

    31/42

    UTHSCSA Biomaterials 31

    Cure Characteristics

    P=0.001

    P=0.022

    Mechanical

  • 8/8/2019 LLouise'09

    32/42

    UTHSCSA Biomaterials 32

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

    Stress (MPa)

    Strain (mm/mm)

    O

    F

    Y

    B

    M

    Mechanical

    Properties

    SAMT exhibits a high

    degree of shear

    yielding even at high

    crosslink density andcure

    SAMT exhibits a high

    degree of shear

    yielding even at high

    crosslink density andcure

  • 8/8/2019 LLouise'09

    33/42

    UTHSCSA Biomaterials 33

    Microtomed Photopolymerized SAMT Blend

    & SAMT Composite (Crossed Polarizers)

    LC state is maintained in the polymerized material

    SAMT SAMT COMPOSITE

    500x Magnification

    10 m

    500x Magnification

    10 m10 m

    500x Magnification

    10 m

    500x Magnification

    10 m10 m

    Small Angle X-ray Diffraction of SAMT

  • 8/8/2019 LLouise'09

    34/42

    UTHSCSA Biomaterials 34

    L=5.65nmOverlay

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

    2 theta

    lc data

    sc

    sb

    SD

    SG

    Before Polymerization

    After Photopolymerizaton

    4.4 nm

    L=4.58nm

    Courtesy: S. Swinnea, UT Austin

    Small Angle X-ray Diffraction of SAMT

    Monomer blend and Polymer

    Smectic

    Liquid Crystal

    Smectic

    Liquid Crystal

    R lt

  • 8/8/2019 LLouise'09

    35/42

    UTHSCSA Biomaterials 35

    ResultsSAMT liquid crystal monomer blend:

    Composite does not crystallizeStable > 3 years Refrigerated In presence of high filler loadingShrinkage reduced by ~75% Mechanical properties ~ current resins Cure rate ~ current dental resins Blend is smectic rather than nematic Smectic phases remain after curing Light scattering --> low translucency

    Bi tibilitBi tibilit

  • 8/8/2019 LLouise'09

    36/42

    UTHSCSA Biomaterials 36

    BiocompatibilityBiocompatibility

    StudiesStudiesLC-blend monomers and polymers

    less cytotoxic than commercial

    resins

    LC-blend restorative compositeutilized in ferret animal model withno adverse effects

  • 8/8/2019 LLouise'09

    37/42

    UTHSCSA Biomaterials 37

    Synthesis simplification and scale-up. Eliminate smectic and phases in the

    polymerized composite.

    Reduce light scattering to improve estheticproperties

    Optimize particulate-filled formulations Nanoparticle reinforcing fillers

    Characterize wear resistance

    Clinical trials

    In Progress and Future Studies

    A k l d t

  • 8/8/2019 LLouise'09

    38/42

    UTHSCSA Biomaterials 38

    AcknowledgementsSSupported byupported by::NIH / NIDCRNIH / NIDCR

    Grant numbersGrant numbers

    P01 DE11688P01 DE11688

    R01 DE06179R01 DE06179

    EssTech & UltradentEssTech & Ultradent

    (Monomers)(Monomers)

    Kerr, Schott Glas (fillers)Kerr, Schott Glas (fillers)

    UTHSCSA & SwRIUTHSCSA & SwRIinternal fundsinternal funds

    University of Texas HSCUniversity of Texas HSC

    BK Norling,BK Norling, K Whang,K Whang, Neera Satsangi,Neera Satsangi,

    V Lee,V Lee,HL Cardenas, Q WhangHL Cardenas, Q Whang

    Southwest Research InstituteSouthwest Research Institute

    ST Wellinghoff, D Nicolella, H Dixon, D Hanson,ST Wellinghoff, D Nicolella, H Dixon, D Hanson,J McDonough, BR Furman, P ThompsonJ McDonough, BR Furman, P Thompson

    Universities in, South KoreaUniversities in, South KoreaY-J Park, D. ShenY-J Park, D. Shen

    StudentsStudents

    Dental School, Co*Star, TAMU, UTSA, UW atDental School, Co*Star, TAMU, UTSA, UW atSt. Louis, UTHSCSA-Biomedical Engineering,St. Louis, UTHSCSA-Biomedical Engineering,

    Health Careers and Clark High Schools, andandothersothers TNTMTNTM

    University of Texas HSCUniversity of Texas HSC

    BK Norling,BK Norling,

    K Whang,K Whang,

    Neera Satsangi,Neera Satsangi,

    V Lee,V Lee,

    HL Cardenas, Q WhangHL Cardenas, Q Whang

    Southwest Research InstituteSouthwest Research Institute

    ST Wellinghoff, D Nicolella, H Dixon, D Hanson,ST Wellinghoff, D Nicolella, H Dixon, D Hanson,J McDonough, BR Furman, P ThompsonJ McDonough, BR Furman, P Thompson

    Universities in, South KoreaUniversities in, South Korea

    Y-J Park, D. ShenY-J Park, D. Shen

    StudentsStudents

    Dental School, Co*Star, TAMU, UTSA, UW atDental School, Co*Star, TAMU, UTSA, UW atSt. Louis, UTHSCSA-Biomedical Engineering,St. Louis, UTHSCSA-Biomedical Engineering,Health Careers and Clark High Schools, andandothersothers TNTMTNTM

    Advanced Dental Restorative SystemsAdvanced Dental Restorative Systems

    NIDCR grantNIDCR grantP01 DE11688P01 DE11688

  • 8/8/2019 LLouise'09

    39/42

    QUESTIONS ?

    H H

  • 8/8/2019 LLouise'09

    40/42

    UTHSCSA Biomaterials 40

    FTIR - Degree of Conversion DC:

    Measured by

    changes in

    aliphaticpeak

    vs.

    aromaticpeak

    1637 cm1637 cm-1-1 :aliphaticdouble bonds

    decrease

    1608 cm-1 :aromaticaromatic,internalstandard,remains

    unchangedDeg. Conversion

    =

    1-(h2/h1)*(H1/H2) x

    100

    h

    H

    RO

    OO

    O

    OR

    O

    OO

    O

    O

    H H

    S

  • 8/8/2019 LLouise'09

    41/42

    UTHSCSA Biomaterials 41

    Volumetric Shrinkage

    This instrument uses image

    recognition by pixel contrast to

    outline the specimen and calculate

    the volume before and after

    polymerization (Martin, 2001).

    Acuvol Bisco Inc.Acuvol Bisco Inc.

    Transverse Strength &

  • 8/8/2019 LLouise'09

    42/42

    Transverse Strength &

    Modulus