LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf...

43
Young, AJ, Guo, D, Desmet, PG and Midgley, GF Biodiversity and climate change: Risks to dwarf succulents in Southern Africa. http://researchonline.ljmu.ac.uk/2882/ Article LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain. The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription. For more information please contact [email protected] http://researchonline.ljmu.ac.uk/ Citation (please note it is advisable to refer to the publisher’s version if you intend to cite from this work) Young, AJ, Guo, D, Desmet, PG and Midgley, GF (2016) Biodiversity and climate change: Risks to dwarf succulents in Southern Africa. Journal of Arid Environments, 129. pp. 16-24. ISSN 1095-922X LJMU Research Online

Transcript of LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf...

Page 1: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

Young, AJ, Guo, D, Desmet, PG and Midgley, GF

Biodiversity and climate change: Risks to dwarf succulents in Southern

Africa.

http://researchonline.ljmu.ac.uk/2882/

Article

LJMU has developed LJMU Research Online for users to access the research output of the

University more effectively. Copyright © and Moral Rights for the papers on this site are retained by

the individual authors and/or other copyright owners. Users may download and/or print one copy of

any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.

You may not engage in further distribution of the material or use it for any profit-making activities or

any commercial gain.

The version presented here may differ from the published version or from the version of the record.

Please see the repository URL above for details on accessing the published version and note that

access may require a subscription.

For more information please contact [email protected]

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you

intend to cite from this work)

Young, AJ, Guo, D, Desmet, PG and Midgley, GF (2016) Biodiversity and

climate change: Risks to dwarf succulents in Southern Africa. Journal of

Arid Environments, 129. pp. 16-24. ISSN 1095-922X

LJMU Research Online

Page 2: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

Biodiversityandclimatechange:RiskstodwarfsucculentsinSouthernAfrica

AndrewJ.Younga*,DanniGuo

b,PhilipG.Desmet

c,andGuyF.Midgley

d

aSchoolofNaturalSciencesandPsychology,LiverpoolJohnMooresUniversity,Byrom

Street,LiverpoolL33AF,UK.

bStatisticalEcologyDivision,BiodiversityResearchAssessmentandMonitoring,

KirstenboschResearchCenter,SouthAfricanNationalBiodiversityInstitute,PrivateBag

X7,Claremont7735,CapeTown,SouthAfrica.

c84,ClearwaterRoad,LynnwoodGlen,Pretoria0081,SouthAfrica.

dDepartmentofBotanyandZoology,StellenboschUniversity,PrivateBagX1

Matieland7602,CapeTown,SouthAfrica.

*Correspondence:SchoolofNaturalSciencesandPsychology,LiverpoolJohnMoores

University,ByromStreet,LiverpoolL33AF,UK.Email:[email protected]

Page 3: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

Abstract

Theaimofthisstudywastoexploretheeffectsofanthropogenicclimatechangeonthe

dwarfsucculentgenusConophytum(Aizoaceae)withinareasrecognisedfortheirfloral

biodiversity,namelytheSucculentKaroo,Fynbos,DesertandNamaKaroobiomesofSouth

AfricaandNamibia.Niche-basedmodellingwasusedtoidentifythekeyclimaticand

geologicalvariablesinfluencingthedistributionofmembersofthegenusConophytum.The

distributionofthegenusisprimarilycontrolledbyasmallnumberofenvironmental

variables,notablywinterandsummerrainfalllevels,togetherwithgeology.Assuminga

zero-dispersalmodel,thepredictedeffectofboththeA1BandA2climaticemission

scenarioswasaseverecontractionintheareasatisfyingthebioclimaticenvelopeforthe

genuscoupledwithsignificantrangedislocation.Reductionsof>90%insuitablehabitatfor

10ofthe16taxonomicSectionsthatcomprisethegenusandrepresent>80%oftaxaunder

theA2scenarioarepredicted.UnderA1Btheprojectedeffectsareameliorated,but

reductionsof>50%ofhabitatcanbeseeninamajorityofSections.Significantprojected

reductionsinthehabitablebioclimaticenvelopeareverylikelytoincreaseriskofextinction

of~80%oftaxaevenunderapartlymitigatedemissionsscenario.

KeywordsConophytum;bioclimaticmodel;biodiversityhotspot;biome;SucculentKaroo;

ECHAM5circulationmodel

Page 4: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

1.Introduction

Anthropogenicclimatechangeisrecognisedasoneofthemainpotentialthreatsto

biodiversityoverthecourseofthiscentury.Earlyprojectionsindicatedthatrichlybio-

diverseregionsincludingtheSucculentKarooandFynbosbiomesofsouthwesternAfrica

wouldbeparticularlypronetopredictedchangesintheclimate(e.g.,Midgleyetal.,2002,

2006;MidgleyandThuiller2007).MorerecentlyareportbytheSouthAfricanDepartment

ofEnvironmentalAffairs(DEA,2014)hasinsteadpredictedamorecomplexsuiteofchanges

acrossthevariousbiomesoftheregion,withpotentialexpansionofsome(e.g.,Desert)and

contractionofothers(e.g.,Fynbos).Contrarytotheresultsofearlierstudies,theareathat

lieswithintheclimaticenvelopeoftheSucculentKaroobiomeisnowthoughttolargely

persistunderallclimatescenariostested,throughto2050,withhigherrisksofextinction

contingentoncontinuedwarming.Whiletheinherentrichnessinfloraldiversity,especially

amongstsucculents,isoneofthedefiningelementsoftheregion,suchdiversitymakesthe

predictionofresponsestoenvironmentalchange(e.g.,increasingaridityandthermalstress)

challenging.Forexample,thevariabilityamongstthefloraofthesebiomesintermsof

droughttoleranceisthoughttobeespeciallysignificant(e.g.,Hoffmanetal.,2009).

LyingwithinthesouthwesterncornerofAfrica,theSucculentKaroobiomeisrecognisedas

oneofthemostimportantregionsoffloralbiodiversityglobally(Mittermeieretal.,1998,

2004).Thebiomeisanareaofapproximately116,000km2lyingonthefringesoftheCape

FloristicRegion.Itischaracterisedbyalowwinterrainfall(DesmetandCowling1999a;

Jürgens1991,1997;RutherfordandWestfall,1994)andisregardedasoneofonlytwo

globalbiodiversityhotspotsthatarefullyarid(Cowlingetal.,1998;Mittermeieretal.,2004).

Theprimaryclimaticfactorsaffectingthebiomearetemperatureandprecipitation(rainfall,

foganddew)bothinamountandseasonality.Rainfalldeclineseasttowestandsouthto

northbutisalsocharacterisedbyitsunpredictablenature.Non-rainfallmoistureisthought

tomakeasignificantcontributiontomakeasubstantial,andreliable,contributiontototal

moistureavailability(Matimatietal.,2013).Fogisrecognisedtobeespeciallyprevalenton

thewestcoastandalongsomelargerriversystems,notablytheOrangeRiver.The

contributionmadebydewtoannualprecipitationappearstobelesspronounced(<20-fold

Page 5: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

less),althoughitismuchmorewidespreadthantheeffectsoffog(Matimatietal.,2013).

Thecombinationofhightemperatures,lowhumidityandlowcloudcoverischaracteristic,

especiallyinlandfromthecoastalstrip(wherethetemperaturerangeisreducedcompared

tofurtherinland).

TheparticularclimaticconditionswithintheSucculentKarooleadtoauniqueflora,

dominatedbyalargenumberofleafsucculents,especiallymembersoftheAizoaceaeand

Crassulaceae(CowlingandHilton-Taylor,1999;Jürgens1991,1997).Thebiomeisstrongly

species-rich,withapproximately5,000vascularplantspeciesrecorded,anddisplayshigh

floralendemicity(~40%).Theminiaturisationofgrowthforminleafsucculents(asseenin

thegenusConophytum)isanadaptationespeciallyevidentintheSucculentKaroo(Desmet

andCowling,1999b).WithintheAizoaceaeahighdegreeofspeciationisevident(Klaketal.,

2004),nomoresothanintheminiatureordwarfsucculentgenusConophytum,whichhas

>160recognisedspeciesandsubspecies(HammerandYoung2016).YoungandDesmet

(2016)determinedthatmorethanhalf(96)ofallConophytumspeciesandsubspeciesare

endemictotheSucculentKaroobiomealonewith>90%ofallConophytumtaxafoundwithin

thissinglebiome.Membersofthegenusarefoundinallsixbioregionsthatcomprisethe

SucculentKarooinSouthAfrica,anddisplayaparticularlystrongassociationwiththe

NamaqualandHardeveldandRichtersveldbioregions.WithinNamibia,thegenusisalso

mostcloselyassociatedwiththebiome.WithintheSucculentKaroo,thehighestlevelsof

floralspeciesdiversity,especiallyindwarfsucculents,areoftenassociatedwithkoppiesor

rockyoutcrops(DesmetandCowling,1999b).Thefloraofthebiomeisalsocharacterisedby

highlevelsofpoint(local/range-restricted)endemism(CowlingandHilton-Taylor,1994;

Driveretal.,2003;Mucinaetal.,2006).Suchpointendemismismostpronouncedamongst

succulents,especiallymembersoftheMesembryanthemacae,includingConophytumin

whichmorethanonefifthofalltaxacanbeconsideredpointendemics(YoungandDesmet,

2016).TherangedistributionofthegenusConophytumliespredominantlywithinawinter

rainfallareawithafewtaxaextending,throughaprecipitationtransitionalzone,eastinto

theBushmanlandandGriqulandNamaKaroo(areaswithsummerrainfall).Thevastmajority

(93%)oftaxaareassociatedwiththeSucculentKaroo(especiallytheNamaqualand

HardeveldandRichtersveldbioregions)andtheDesertbiomes(YoungandDesmet,2016).

SubstantiallyfewertaxaarefoundwithintheFynbosandNamaKaroobiomes.Thestrongest

Page 6: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

affinityofthegenusiswiththeNamaqualandHardeveldbioregionwhichishometo84taxa

alone,including43thatareendemictothatsinglebioregion.

Whilepredictionsofthepossibleeffectofclimatechangeonindividualbiomesnowexist

(e.g.,DEA2014)therearefewstudiesexploringsucheffectsonindividualplantgenera.

Untilnowoneofthemajorrestrictionsinperformingsuchanalyseshasbeenthelackof

accuratelocalitydataforsucculents.Theserepresentakeyelementofthefloraofthe

region,allthemoresoastheyarerecognisedasamongstthebest-adaptedplantstothe

localenvironmentalconditions,especiallydroughttolerance(e.g.,Musiletal.,2010).

Utilisingacomprehensivelocationdatabase,theaimofthisstudywastoassessthe

vulnerabilityofthedwarfsucculentgenusConophytumtoanthropogenicclimatechangein

thisregion.

2.Methods

2.1Vegetationdata

ThisstudyconcernedthedwarfsucculentgenusConophytumatspeciesandsubspecieslevel

asdefinedbyHammerandYoung(2016).Thegenusconsistsof165recognisedspeciesand

subspecies,ofwhichthelocalitiesofjustsixarecurrentlyunknown(lostorpossiblyextinct

inhabitat).Distributionoftaxawasrepresentedbythelocalitydatain>2,700points,mainly

theresultoffieldworkconductedbytwooftheauthors(YoungandDesmet,unpublished

data).Therecordedlocalitydatawerecarefullyassessedforerrorbeforeusingtheminthe

modelandwhereaccurategpsrecordingswerenotavailable,distributionswereindividually

geo-referencedtowithin0.5kmoftheirstatedlocation.Whenthiswasnotpossibleorin

caseswhentheidentificationofthetaxonwasuncertain,datawasexcludedfromthisstudy.

ThevastmajorityofallavailabledataarisefromSouthAfricaandmuchlessfromNamibia.

Nevertheless,allavailablerecordswereusedaslongastheaccuracyoftherecordwas

deemedsufficientlyrigorous.InadditiontostudyingtheeffectsonthegenusConophytum,

thepotentialeffectsofthechosenemissionscenarios(seebelow)weremodelledonclosely

relatedgroupsofConophytumspeciesandsubspeciesorganisedintodiscretetaxonomic

Sections,basedontheirmorphology(asrecognisedbyHammer,2002andHammerand

Page 7: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

Young,2016).TheadoptionofSectionshereallowsthecombiningthelocalityrecordsfor

severaltaxaandthereforepermitstheinclusionofthosespeciesandsubspeciesforwhich

thereareonlyalimitednumberoflocalityrecords(i.e.,whereeitherthenumberofknown

localitiesisloworfortaxawhicharepoint-endemicsandareseverelyrange-restricted).

2.2Globalemissionscenarios

TheclimateandenvironmentaldatausedwerefromtheWorldclimdatabase(Hijmansetal.,

2005),andfromtheNationalLand-coverProject2006.Toexaminethepossiblefutureclimate

change impacts on the geographic distribution and potential range shifts for the genus

Conophytum in southern Africa, projected future (2040-2069) climate data (Ramirez and

Jarvis,2008)wereusedwiththepresent(1950-2000)climatedata,witharesolutionof1km

x1km.ECHAM5isthefifthgenerationoftheECHAMgeneralcirculationmodel,anditisa

globalclimatemodeldevelopedbytheMaxPlanckInstituteforMeteorology(Roeckneretal.,

2003). It was specifically adjusted bymodifying global forecastmodels developed by the

EuropeanCentre forMedium-RangeWeatherForecasts, so that it canbeused forclimate

research.ECHAM5andotherglobalclimatemodelswererecentlyused in the IPCCFourth

AssessmentReport,whereitprovedtobeareliableglobalclimatemodelbycomparisonto

others (e.g.,ConnolleyandBracegirdle2007).MIROC(consideredtobethewettestglobal

climatechangescenario),ECHAM5(anintermediaterainfallfuture)andCSIRO(driest)were

initiallyevaluatedinourstudies.ECHAM5waschosenasitwasseentobebettersuitedfor

predictions of Southern Africa climate, with its inherent regions of dryness and wetness.

ECHAM5hasalsousedbytherecentanalysisofclimatechangeinthestudiesfortheSouth

AfricanDepartmentoftheEnvironment(DEA,2014).

Inthisstudy,theimpactofclimatechangewasexaminedundertwodifferentcarbon

emissionscenarios.Potentialchangesinthefutureonthedistributionareaofthe16

Sectionsthatcomprisethegenuscomparedtothepresentdistributionwereanalysed.To

explorehowsensitiveConophytummaybetoclimatechange,theA2andA1Bclimate

scenarioswereusedtoallowbetween-modelcomparison,assumingunconstrainedand

constrainedglobalfossilfuelemissions,respectively.TheA2climatescenario(asusedby

DEA,2014)assumesself-reliance,preservinglocalidentities,withmoderateregional

Page 8: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

economicdevelopment,butwithahighincreaseinpopulation,increasedresource

utilisation,aslowertechnologicaldevelopmentandhigherCO2emissions(Parryetal.,2007).

TheA1Bclimatescenarioassumesrapideconomicgrowthresultinginaglobalpopulation

thatpeaksmid-centuryanddeclinesafterwards,combinedwithamorerapiddevelopment

ofefficienttechnologies,reducingtherelianceonselectedenergysources(Parryetal.,

2007).Thesetwoscenarioswerenotusedasabsolutepossiblescenariosforthefuture,but

moreasatooltoexplorethesensitivityofthegenusConophytumtopredictedchangesin

climateinthefuture.TheA2scenarioisinlinewithcurrentemissionstrends(Nakicenovicet

al.,2000),whiletheA1Bscenarioadoptsaslightlymoremitigatedemissionspathway.

TheeffectsofscenariosA1BandA2onthegeographicrangeofthegenusinSouthAfricaand

Namibia were modelled using MaxEnt (Phillips et al., 2004, 2006). This applies Bayesian

methodstoestimatethepotentialgeographicdistributionofspeciesbyfindingtheprobability

distribution of maximum entropy and is an effective method for modelling species

distributions from presence-only data. This spatial modelling software can also address

samplingbiasthatiscommoningeographicalrecordsbecausecollectionsusuallyfavourthe

most accessible areas (e.g., close to roads and within nature reserves), thus making it a

suitable tool for the present study. The first stage was to relate current environmental

conditions to occurrence data for the 16 recognised Sections that comprise the genus

Conophytumandsubsequentlymadespatialpredictionsforthetwoclimatechangescenarios.

TheconventionalBayesianriskcriterionisbasedonthequadraticlossfunctionanduseofa

conjugatefamily(Guo,2010),andtheMaximumEntropymodellingisanimportantBayesian

inference,whichisestablishedbydifferentriskcriteria.Inthiscasethespeciesdistribution

probabilityisstatisticallyestimatedbysearchingthefamilyofprobabilitydistributionsunder

themaximumentropycriterionsubjecttoenvironmentalconstraints.

The species distribution projections used in this study used Gibbs sampling. This is a

statisticalalgorithmusedbyBayesianinference.TheGibbsfamily{qλ(x),λ∈L}isexpressedas

follows:

( )( )

( )1

1exp

m

i i

i

q x f xZ x

λ

λ

λ=

⎛ ⎞= ⎜ ⎟

⎝ ⎠∑

eq.1

Page 9: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

whereλi=(λ1,λ2,...,λm)istheweightvector,λirepresentstheweightparameter,Listhem-

dimensionalspace,fi(x)representstheprobabilitydistributionofspecies i,andZλ(x) isthe

normalised constant. Note that each element x is a pixel in the investigated area. The

probabilities fi(x)representtherelativesuitabilityoftheenvironmentalconditions ineach

pixel(Philipsetal.,2004,2006;Elithetal.,2011).

2.3Environmentalvariables

InordertoexplorethebioclimaticenvelopeofthegenusConophytum,atotalof20

environmentalvariableswereexploredataresolutionof1km.Theseconsistedof16

bioclimaticvariablestogetherwithfourseparatevariablesreflectinggeology(substrate).

Thechoiceofvariablesadoptedforthestudyreflectedthemainclimaticfactorsaffecting

theSucculentKarooasidentifiedbyDesmetandCowling(1999a).Theclimaticvariables

usedwere:maximumandminimumtemperatures(Tmax,Tmin,respectively),average

temperatureandrainfall(TavandPav,)forallfourseasons.Seasonalperiodsweredefinedas:

Q1=December,January,February;Q2=March,April,May;Q3=June,July,August;and,Q4

=September,October,November.Anumberofenvironmentalvariableswereadoptedas

possibleconstraintsonthepotentialformigrationordispersaleventsbyConophytumtaxa.

Thesewerecomprisedof:altitude(elevationabovesealevelinmeters),terrainmorphology

(plains,slopes),geology1(igneous,limestone,quartzite,sand,schist,shale,ultramafic)and

geology2(acidity,alkalinity).Thefullrangeofenvironmentalvariablesusedisgiveninthe

Appendix.

Eachspatialmodelgeneratesthepercentagecontributionforeverypredictorvariableused

withapercentagecontributionbeingestimatedfromtheiterationsofthetrainingalgorithm

byaddingorsubtractingregularizedgaintothevariableinquestion.Modellingwas

performedusingdefaultparameters,withregularizationmultiplier=1,maximumiterations

=500andtherandomtestpercentageof20%.Modelperformancewasdeterminedbyarea

undercurve(AUC)ofthetrainingandtestdataforthegenusandindividualSections(see

Fig.1forabbreviations):BAR(AUC=0.980),BAT(AUC=0.992),BIL(AUC=0.982),CAT(AUC

=0.968),CHE(AUC=0.975),CON(AUC=0.963),COS(AUC=0.971),CYL(AUC=0.986),HER

Page 10: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

(AUC=0.987),MIN(AUC=0.973),OPH(AUC=0.981),PEL(AUC=0.986),SAX(AUC=0.980),

SUB(AUC=0.991),VER(AUC=0.987),WET(AUC=0.973).TheaverageAUCtakenacrossall

Sectionswas0.979,indicatinganexcellentpredictiveabilityofthemodels.

AhabitatwasconsideredsuitableforConophytumiftheprobabilityofpersistencewas≥0.3

whileregionswithaprobability<0.3wereassumedtobeunsuitableforlong-termsurvival.

Twoplotsof[omissionvs.predictedarea]and[sensitivityvs.specificity]weregeneratedand

acalculationofmodelperformancewereused todetermine thepersistence threshold for

each Conophytum Section. In this case, a threshold of 0.3 that maximized both training

sensitivityandspecificityunderthecurrentclimate(Liuetal.,2005)wasadopted.

3Results

3.1Present(1950-2000)

Inthisstudy,responsecurvesgeneratedbythespatialmodellingsoftwareshowthatthe

distributionofConophytumispredominantlyinfluencedbytwomainenvironmental

variables,namelygeologyandtheamountofrainfallinthewarmestquarter,Q1(see

Appendix;theamountofrainfallisequivalentto5-35mmofprecipitation).Thewarmest

quarter(Q1)coincideswiththenaturaldormancyperiodofthegenus,withgrowthand,in

thevastmajorityoftaxa,floweringbeingmostprevalentintheautumnmonths(Q2).Other

importantvariablesinfluencingthedistributionrangeofmembersofthegenusarethe

minimumtemperatureandrainfallwithinthecoldestquarter(Q3),andrainfallwithinQ2.

WhenexploredatSectionlevelwithinthegenus,geologywasfoundtobethedominantor

atleastasignificantfactorinamajorityofSections(exceptBiloba,Conophytum,Minuscula,

Saxetana,SubfenestrataandWettsteinii).Rainfallwithinthewarmestand/orcoldest

quarterswasasignificantenvironmentalfactorforallbutthreesections(Herreanthus,

OphthalmophyllumandVerrucosa).TaxainSectionsOphthalmophyllumandVerrucosaare

somewhatgeographicallydisjunctfromtherestofthegenusandprimarilyoccupythe

northernpartoftheBushmanlandbioregionintheNamaKaroobiome(lyingtotheeastof

Page 11: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

thetownofSpringbokandsouthoftheOrangeRiver)andtheeasternmostfringesofthe

NamaqualandHardeveldbioregion.Thisarealieswithinthetransitionalzoneforwinter-

summerrainfall.

3.2Projectedfuture(2040-69)scenarios

Theprojectionsforbothemissionscenarios(A1BandA2)showapotentialrangeshiftof

membersofthegenuscoupledwithsignificanthabitatfragmentation(Figs.1-2).Ineach

case,theprojectionsarepresentedassumingbothafull(universal)migrationorperfect

dispersalmodel(allowsfor‘positivechange’inFigs.1-2)anda,morerealistic,zero-

migrationmodel(ignores‘positivechange’inFigs.1-2).Assumingfullmigration,

Conophytumwouldappeartobereasonablywell-adaptedtofutureclimaticconditions,and

exhibitedatheoreticalpotentialforrangeexpansion.However,thepredictedlossof

existingsuitablehabitatacrossthegenuswasdeterminedtobe70.5%and33.8%under

scenariosA2andA1B,respectively.Thepotentialforhabitatexpansionunderboth

scenariosthiswouldbehamperedbybothgeographicrangeshift(e.g.,inSectionBatrachia

of200-600kmdistantfromexistinglocations,dependingonthescenario)coupledwith

habitatfragmentation(Figs.1-2).Themoststrikingoveralleffectisamarkedpotentialrange

expansionforthegenustotheeastandnortheastintosouthernNamibia.Underscenario

A1BafurtherconcentrationofsuitablehabitatisseenintheSucculentKaroointhe

southwesterncornerofNamibia,alongtheOrangeRiverandintothesouthernSperrgebiet

(Fig.1).TheA2model,bycontrast,suggeststhepotentialforamassiveexpansionofrange

northtowardsthecoastaltownofLuderitzintotheNamibDesertandeastthroughthe

BushmanlandbioregionintheNamaKaroobiome(Fig.2).Thepredictedrangeshiftofthe

genusthroughtheGankaKarootothesoutheastofthecurrentdistributionisalsomarked.

EachtaxonomicSectionrespondeddifferentlytoeachemissionsscenariointermsof

potentialhabitatgainandlossofcurrentsuitablehabitat(Figs.1-2).Forexample,Sections

CylindrataandSubfenestrataexhibitedthelowestlossofhabitatunderemissionsscenario

A1B,yettherelativeimportanceoftheenvironmentalvariablestestedinthisstudywere

verydifferent(geologyisofprimaryimportanceintheformer,whilesummerrainfalliskey

inthelatter).AnumberofSectionsarecurrentlyhighlygeographicallylocalised(e.g.,Section

Costata)whileothersoccupyaverylargerange(e.g.,SectionMinuscula).Suchdifferencesin

Page 12: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

currentdistributionrangedonot,inthemselves,necessarilyreflectsubsequentresponsesto

climatechange.Therewasnoclearpatternbetweenpredictedhabitatlossorgainacross

thedifferentSections,i.e.,alargevalueforhabitatlossdoesnotalwaysequatetoalow

gain.However,thoseSectionssuchasCataphracta,CylindratumandBatrachia(inthe

SucculentKaroobiome)appearedtobewellbufferedagainsthabitatlossunderemission

scenarioA1B(butnotunderA2).DifferencesintheresponseofSectionCostatatoA1B(55%

habitatloss)andA2(3%loss)arenotunderstoodandrathercontradictorytothebehaviour

seenintheotherSections.

Assumingazero-dispersalmodel,bothscenarioswouldresultinaseverecontractioninthe

bioclimaticenvelopeforthegenus(Fig.3),withreductionsof>90%incurrenthabitatfor10

ofthe16SectionspredictedundertheA2scenario(Fig.3B),withallothers(exceptSection

Costatawhichconsistsofjusttwotaxa)wouldexperienceareductionof>68%incurrent

habitableland.ThevulnerabilityofConophytumtobothemissionscenariosisshownin

Figure4.UnderA1BmorethanhalfofallConophytumspeciesandsubspecieswouldseea

lossof>50%currentlysuitablehabitat,with43%experiencingalossof70%ormore.Under

scenarioA2theeffectsaremoredrastic,with>90%ofConophytumtaxapredictedtolose

70%ormoreoftheircurrenthabitat.Theriskofextinctionishigh,withmorethan90ofthe

160taxapredictedtolose>90%oftheirexistinghabitat(Fig.4).

Thezero-dispersalmodelshowsthattheSucculentKaroobiomewillremainthemaincentre

forthegenusandwillessentiallydefinethefuturerangeformostsurvivingtaxa(especially

theNamaqualandHardeveldbioregion).

4.Discussion

ThedwarfsucculentgenusConophytumisoneofthelargestintheAizoceaeandgenerally

regardedasoneofthemostadaptiveofthedwarfsucculentsasitoccupiessuchawide

geographicalrangeandgeologies.Itisalsooneofthelargestofthegenerapresentinthe

SucculentKaroobiome.Suchdwarfsucculentsarethoughttobeamongstthemostresilient

ofplantspeciesinthebiometoenvironmentalchange.Bycontrastboththerophytesand

geophytesshowincreasedsensitivitytobothdroughtandtemperatureextremes(Hoffman

Page 13: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

etal.,2009).Bothemissionscenariosexaminedinthisstudypredictchangesinthe

bioclimaticenvelopeformembersofthegenus.BoththeA1BandA2emissionscenarios

testedinthisstudyresultinpronouncedhabitatfragmentationandrangedislocationforthe

genus(Figs.1-2).However,therearemarkeddifferencesintheresponseofdifferent

Sectionstothetwoemissionscenarios.WhilelossofhabitatislesspronouncedunderA1B

comparedtoA2,thepotentialforrangeexpansion(assumingeffectivedispersal)isalso

reduced.Overall,thestudyindicatesthatthepotentiallossofcurrenthabitatforthevast

majorityofmembersofthegenusConophytumwillbeintherange50-100%.

Midgleyetal.(2002)proposedalinkbetweenrangedislocationandextinctionpotentialin

theFynbosasthepredictedrateofclimatechangeislikelytoexceedtheabilityof

populationstomigrate(aslimitedbydispersalmechanisms,forexample).Whilethe

potentialfordispersalormigrationasawholeinConophytumisverypoorlyunderstood

theseconclusionsareequallyapplicablehere.Migrationrateassumptionsintheorderof1-

5kmperdecadehavebeenusedinotherfloralstudies(e.g.,Midgleyetal.,2006),withthe

lowerlimit(arguablyanover-estimation)reflectingantorrodent-aideddispersalandthe

highervalueforwind-bornedispersalevents.WhiletheseedcapsulesforConophytumtaxa

aresmallandlighttheyarenotspecificallyadaptedforwind-dispersal.Coupledwiththefact

thatthecapsulesarealsoveryfragile(mitigatingagainstlonger-distancetravel)itis

reasonabletoassumethatamaximumrateof1kmperdecadecouldbeapplied.This

contrasts,however,withtheestimatesofrangedislocationforindividualConophytum

Sectionsfromthisstudy,whichareintherangeoftenstohundredsofkilometres.Such

largedislocationswillclearlybeamajorlimitingfactorinthesubsequentpotentialforthe

genustomigratetoothersuitablehabitats,andlikelyonlyovercomethroughhuman

intervention(assistedmigration).Whileapartialdispersalmodelhasnotbeenrunforthis

data,itissuggestedthattheresultsassumingazero-dispersalapproachwillbemost

appropriateandbetterindicatestheriskforextinction(Fig.3).Knownoccurrencesof

colonisationbyConophytumtaxainrecenttimescalesarerare,withperhapsthebest-known

examplebeingthatofC.luckhoffiiontheverticalcuttingsmadein1958atPiekeniersPassin

theWesternCaperegionofSouthAfrica.InthisinstanceestablishedpopulationsofC.

luckoffiihavebeenrecordedfromwithin~2-3kmofthecuttingsothedistancesinvolvedin

suchcolonisationaremuchlessthanthoseindicatedbythemodellinghere.Itisalsoworth

Page 14: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

notingthatthefewattemptsatrecolonisationthroughseeddispersalhavenotmetwith

successinthisgenus(S.A.Hammerpers.comm).

Bellardetal.(2014)predictalossofapproximatelyonethirdofallendemicspecieswithin

theSucculentKaroo(819species)duetoclimatechangeunderemissionsscenarioA1.The

dataheresuggestthatdwarfendemicssuchasConophytummaybeespeciallyvulnerableto

suchchange,despitethefactthatexperimentalstudieshavesuggestedthatsuchdwarf

succulentsmaybeamongstthemostwelladaptedtodrought(e.g.Musiletal.,2010).The

modelspredictasubstantialrangereduction(i.e.,lossofcurrentlysuitablehabitat)forthe

majorityofConophytumtaxa,especiallyunderscenarioA2.Evenunderthemoremoderate

A1BscenariomorethanhalfofallConophytumspeciesandsubspecieswouldexperiencea

reductionincurrenthabitablerangeofmorethan50%.Thehighincidenceofpoint-

endemismwithinthegenusfurtherexacerbatestheriskofextinction.

ThecurrentspatialdistributioninConophytumisstronglyinfluencedbygeology(see

Appendix)andtheavailabilityofsuitablesubstratewillbeapowerfulinfluenceonthe

potentialrangeshiftofindividualmembersofthegenus.Driveretal.(2003)highlightedthe

potentialthatthequartzfieldsoftheKnersvlaktepresentforspeciesmigrationandthe

importanceofquartzfieldswithintheSucculentKaroobiomehasbeenhighlightedby

SchmiedelandJürgens(1999).GiventhepotentialeffectsonConophytumdistribution

showninthisstudythesequartzcorridorscouldprovetobeamajorfactorinmitigatingthe

effectsofrangedislocation,allthemoresogiventhelackofsuitablesubstrateonthe

sandstone-dominatedlandscapeoftheBokkeveldPlateautothesoutheastand

granite/gneisstotheeastandnorthoftheKnersvlakte.Such‘geologicalgaps’willinmany

areaswhereConophytumisprevalentfurtherinhibitlonger-distancemigration(e.g.,inthe

inselbergsofBushmanland).

Topographicdiversityhasbeenidentifiedashavingabufferingeffectmoderatingthe

potentialeffectsofclimatechange(e.g.,inthecaseofFynbosbiome;Midgleyetal.,2002)

andcanformpartofaconservationstrategy(Halpin1997).InthegenusConophytum,the

datapresentedheresuggestthatthisdoesnotappeartobethecase–altitudeisnota

significantfactorinthedistributionofthegenus,withtaxathrivinginbothcoastalareasat

Page 15: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

sealevelandinsomeofthehighestmountainregionssuchastheKhamiesberg.Itis

probablethatthepotentialameliorationeffectaffordedbyaltitudeisoutweighedbythe

overwhelminglydeleteriouseffectsofclimatechange.

Aswithmanyotherdwarfsucculents(Ihlenfeldt,1994;Desmetetal.,1998),thegenus

Conophytumischaracterisedbyahighdegreeofspeciationandendemism.Whileasmall

numberofthe159speciesandsubspeciesstudiedheremaybefoundoccupyingaverylarge

latitudinalrange(e.g.,C.bilobumandC.pageae)mostaremuchmoreheavilyrestrictedin

theirdistributionwithintheoverallbioclimaticenvelopeforthegenus.Indeedthepotential

impactofclimatechangeiscompoundedbythenumberofhighlylocalised,pointendemics

seeninthegenus.Suchpointendemicsaccountfor~28%ofallConophytumtaxaandare

especiallyprevalentwithintheSucculentKaroobiome(YoungandDesmet,2016).

Opportunitiesformigrationamongsuchhabitatspecialistswouldbeexpectedtobe

considerablyreducedcomparedtomorewidespreadtaxa.Suchtaxaareespecially

vulnerabletoclimaticorotherenvironmentalorhuman-madechanges(e.g.,expansionof

miningandfrackingactivities).Membersofthegenusdisplayarangeofgrowthformsbut

thisdoesnotappearinitselftobeafactorindetermininghowindividualtaxarespondto

climatechange.Forexample,thosetaxawhichcanbedescribedasasubterraneanformof

nanochamaephytes(seeSchmiedelandJürgens,1999),especiallythoseinSection

Ophthalmophyllum,overallbehaveverysimilarlytoothertaxainresponsetoclimate

changeunderbothemissionscenarios.

Thisstudycanassistinfutureplanninginidentifyingandmanagingareasofconservation

potentialwithinthebioclimaticenvelopeoccupiedbythegenusConophytumnowandinto

thefuture.LessthanonethirdofConophytumtaxaoccurwithincurrentformalprotected

areaswithinSouthAfricaandNamibia(YoungandDesmet,2016).Theseformal

conservationareasdonothoweveralignwellwiththepredicteddistributionsoftaxaunder

eithertheA1BorA2emissionscenarios.However,someoftheareasidentifiedinSouth

AfricaundertheNationalProtectedAreasExpansionStrategy(NPAESfocusareas)havethe

potentialtoprovidemorecomprehensivecoverageoftaxagiventheprojectedfuture

distributions,especiallyundertheA1Bemissionsscenario.TheKnersvlaktebioregionisone

ofthosemostadverselyaffectedunderbothemissionscenarios(especiallyA2)andisof

Page 16: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

particularsignificancewithinSouthernAfricaintermsofitsbiodiversity(leadingtoits

designationasaNatureReservein2014).ThequartzfieldsoftheKnersvlaktearehometo

severalConophytumtaxa,includingC.acutum,C.minutum,C.subfenestratumandC.

uviforme.C.uviformessp.subincannumuniquelyinhabitslimestoneandseveralother

speciesarefoundontheperipheryofthearea(e.g.,C.reconditum).Thepredictedrangeof

thesetaxa,withtheexceptionofC.subfenestratum,willbegreatlyreducedunderthe

conditionspredictedbyemissionscenarioA1BandcompletelylostunderscenarioA2.

Schmiedeletal.(2012)suggestthatinthequartz-fieldpopulationsoftheKnersvlaktethe

‘near-endemicandhabitat-specialised’plantsmaybebetterbufferedagainstvariationin

annualrainfallpatternsthanpreviouslythought.Here,theinfluenceofothersourcesof

moisturesuchasdewandlocalisedfogsmaybesignificantinplantsurvival(Matimatietal.,

2012).However,itisnotknownhowsuchlocalisedeventsmaybeinfluencedbythe

emissionscenariosstudiedhere.Theresultsofpassivewarmingexperimentsinthe

Knersvlakteindicatethatquartzfieldspeciesarealreadyclosetotheirlimitsofthermal

tolerance(Musiletal.,2009,2010).

TheresultssuggestthattheNamaqualandHardeveldbioregionwithintheSucculentKaroo

biomewillremain(seeYoungandDesmet,2016)thesinglemostimportantgeographical

areaforthegenusunderbothemissionscenarios.KeyareasincludetheNamaqualand

KlipkoppeShrubland(currentlythesinglemostdiversevegetationunitforthegenuswith67

taxa,including23endemictothevegetationunit)andNamaqualandHeuweltjieveld

vegetationunits.TheAIBclimatemodelindicatesthatRichtersveldbioregionwillalso

remainanimportantcentreformembersofthegenus,especiallytheLekkersingSucculent

Shrubland(12taxa)andSouthernRichtersveldInselbergvegetationunits(11taxa).

5.Conclusions

Overall,theriskofextinctiontoamajorityofspeciesandsubspeciesofthegenus

Conophytumasaresultofclimatechangeisextremelyhigh.Thesedeleteriouseffectsare

likelycompoundedbythehighdegreeofpointendemismseeninthisgenus,atraitshared

withsomeothersucculentgenera.Suchresultsareofspecialconcernforthewiderfloral

compositionoftheregion’sbiomes,especiallytheSucculentKaroowhereConophytumis

Page 17: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

mostprevalent,asitisgenerallyrecognisedthatdwarfsucculentssuchasConophytumare

amongstthebest-adaptedplantstodrought.Asarecognisedglobalbiodiversityhotspot,the

impactofclimatechangeonthefloraldiversityoftheSucculentKaroobiomeisthereforeof

specialconcern.Thedatahereindicatethatalthoughtheoverallclimateenvelopeofthis

biomemaynotchangesignificantlyasaresultofclimatechange(DEA,2014),theeffecton

individualgeneraandspeciesthatoccupythebiomemaybeprofound.Thepotential

vulnerabilityoftheSucculentKaroo(togetherwiththeHornofAfrica,Madagascar,the

IndianOceanislands,andthemountainsofsouthwestChina)tolandusechangehasbeen

highlightedrecentlybyBallardetal.(2014),whosuggestedthatatleast20%ofherbaceous

covermaybelost.Thiswouldfurtherincreasetheriskoflossofbiodiversityandenhance

theriskofextinctioninthebiome.Currently,fewconservationstrategiesproperlytakeinto

accountclimatechange,focusinginsteadonchangesinlanduseorreclamation.Theresults

ofourmodellingsuggestthatconservationstrategiesandplanningfortheSucculentKaroo

andadjacentbiomesshouldconsidertheresultsofclimatechangemodelling,identifying

thoseareasbothathighestriskandthosethatwouldappeartobemostresilienttoandcan

bufferagainstsuchchanges.

Acknowledgements

WethanktheWorldclimdatabase,theNationalLand-coverProject2006,andtheSouth

AfricanNationalBiodiversityInstitute,forprovidingsomeofthedatausedinthisstudy.This

materialisbaseduponworkpartiallysupportedfinanciallybytheNationalResearch

FoundationofSouthAfrica(Reference:IFR150206113775,GrantNo:96163).Wealsothank

ChrisRodgersonforhisinvaluablecontributionstowardsthefieldworkthatenabledthe

localitydatatobecompiled.

AppendixA.Supplementarydata

Thefollowingarethesupplementarydatarelatingtothisarticle

TableS1.PredictedchangeinsuitablelandareaforsectionsofthegenusConophytum

Page 18: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

TableS2.ListofspeciesinthegenusConophytumasrecognisedbyHammerandYoung

(2016).Localitydataforallthetaxalistedwasusedintheclimatechangemodellingexcept

forC.semivestitumandC.herreanthusssp.herreanthuswhicharebothlostinhabitat.

Naturalhybridswereexcludedfromthestudyaswasanycollectionofuncertaintaxonomy.

Fig.S3.SamplelocationsofConophytuminNamibiaandSouthAfrica.

TableS4.ContributionofvariablesforthepresentdistributionofConophytumSections.

Fig.S5.PhotographsofConophytumtaxainhabitat.A.C.turrigerumisahabitatspecialist

knownfromfewerthantensiteswhereitgrowsinlichenandmossongranite-hereat

Paarl,WesternCape,SouthAfrica;B.C.marginatumssp.littlewoodiiinhabitatinthe

NorthernCape,SouthAfrica.ThistaxonisrestrictedtofourknownsiteswithinSouthAfrica,

allclosetotheOrangeRiverinnorthernBushmanland;C.Oneofthesmallestmembersof

thegenus,C.rugosumgrowinginagritpanongneissintheNorthernCape,SouthAfrica.

ThistypeofhabitatispreferredbyawiderangeofConophytumtaxaandisparticularly

vulnerabletodisturbance;D.C.subterraneumisaquartzfieldspecialistthatisonlyrecorded

fromasinglesiteintheRichtersveld,NorthernCape,SouthAfrica.

Page 19: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 20: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

19

References

Bellard,C.,Leclerc,C.,Leroy,B.,Bakkenes,M.,Veloz,S.,Thuiller,W.,Courchamp,F.,2014.

Vulnerabilityofbiodiversityhotspotstoglobalchange.GlobalEcol.Biogeogr.23,1376-1386.

Connolley,W.M.,Bracegirdle,T.J.,2007.AnAntarcticassessmentofIPCCAR4coupled

models.Geophys.Res.Lett.10,L22505.DOI:10.1029/2007GL031648.

Cowling,R.M.,Hilton-Taylor,C.,1994.Phytogeography,floraandendemism.In:Cowling,R.

M.,Richardson,D.M.,Pierce,S.M.(Eds.),VegetationofSouthernAfrica.Cambridge

UniversityPress,Cambridge,pp.43-61.

Cowling,R.M.&Hilton-Taylor,C.,1999.Plantbiogeography,endemismanddiversity.In:

Dean,W.R.J.,Milton,S.(Eds.),TheKaroo.EcologicalPatternsandProcesses.Cambridge

UniversityPress,Cambridge,pp.42-56.

Cowling,R.M.,Rundel,P.W.,Desmet,P.G.,Esler,K.J.,1998.Extraordinaryhigh

regional-scaleplantdiversityinsouthernAfricanaridlands:subcontinentalandglobal

comparisons.Divers.Distrib.4,27–36.

DEA,2014.Long-TermAdaptationScenariosFlagshipResearchProgramme(LTAS)for

SouthAfricaPhaseITechnicalReport6:ClimateChangeImplicationsfortheBiodiversity

SectorinSouthAfrica.DepartmentofEnvironmentalAffairs,RepublicofSouthAfrica.

Desmet,P.,Cowling,R.,1999a.TheClimateoftheKaroo.AFunctionalApproach.In:Dean,

W.R.J.,Milton,S.(Eds.),TheKaroo.EcologicalPatternsandProcesses.CambridgeUniversity

Press,Cambridge,pp.3-16.

Desmet,P.,Cowling,R.,1999b.Biodiversity,habitatandrange-sizeaspectsofaflorafroma

winter-rainfalldesertinnorth-westernNamaqualand,SouthAfrica.PlantEcol.142,23-33.

Desmet,P.G.,Ellis,A.G.,Cowling,R.M.,1998.SpeciationintheMesembryanthemacae.Aloe,

35,38-43.

Driver,A.,Desmet,P.,Rouget,M.,Cowling,R.,Maze,K.,2003.SucculentKarooecosystem

plan:Biodiversitycomponent.CapeConservationUnitTechnicalReport,CapeTown.

Elith,J.,Phillips,S.J.,Hastie,T.,Dudík,M.,Chee,Y.E.,Yates,C.J.,2011.Astatisticalexplanation

ofMaxEntforecologists.Divers.Distrib.17,43-57.

Guo,R.,2010.BayesianReliabilityModelling.In:Lovric,M.(Ed.),InternationalEncyclopedia

ofStatisticalScience,Springer-Verlag,Berlinpp.104-106.

Page 21: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

20

Halpin,P.N.,1997.Globalclimatechangeandnatural-areaprotection:management

responsesandresearchdirections.Ecol.Appl.7,828-843.

Hammer,S.A.,2002.DumplingandHisWife:NewViewsontheGenusConophytum.EAE

CreativeColourLtd,Norwich.

Hammer,S.A.,Young,A.J.,2016.Conophytum:Ruschioideae.In:Hartman,HE.K.(Ed.),

IllustratedHandbookofSucculentPlants,Aizoceae.Springer-Verlag,Berlin.(InPress)

Hijmans,R.J.,Cameron,S.E.,Parra,J.L.,JonesP.G.,Jarvis,A.,2005.Veryhighresolution

interpolatedclimatesurfacesforgloballandareas.Int.J.Climatol.25,1965-1978.

Hoffman,M.T.,Carrick,P.C.,Gillson,L.,WestA.G.,2009.Droughtclimatechangeand

vegetationresponseintheSucculentKaroo,SouthAfrica.S.Afr.J.Sci.105,54-60.

Ihlenfeldt,H-D.,1994.Diversificationinanaridworld:TheMesembryanthemacae.Annu.

Rev.Ecol.Syst.25,521-546.

Jürgens,N.,1991AnewapproachtotheNamibregion.I.Phytogeographicsubdivision.

Vegetatio,97,21-38.

Jürgens,N.,1997.FloristicbiodiversityandhistoryofAfricanaridregions.Biodivers.

Conserv.6,495-514.

Klak,C.,Reeves,G.,HeddersonT.,2004.UnmatchedtempoofevolutioninSouthernAfrican

semi-deserticeplants.Nature,427,63–65.

Liu,L.,Berry,P.M.,Dawson,T.P.,Pearson,R.G.,2005.Selectingthresholdsofoccurrencein

thepredictionofspeciesdistributions.Ecography,28,385–393.

Matimati,I.,Musil,C.F.,Raitt,L.,February,E.,2013.Nonrainfallmoistureinterceptionby

dwarfsucculentsandtheirrelativeabundanceinaninlandaridSouthAfricanecosystem.

Ecohydrology,6,818-825.

Midgley,G.F.,Thuiller,W.,2007.PotentialvulnerabilityofNamaqualandplantdiversityto

anthropogenicclimatechange.J.AridEnviron.70,615-628.

Midgley,G.F.,Hannah,L.,Millar,D.,Rutherford,M.C.,Powrie,L.W.,2002.Assessingthe

vulnerabilityofspeciesrichnesstoanthropogenicclimatechangeinabiodiversityhotspot.

GlobalEcol.Biogeogr.11,445-451.

Midgley,G.F.,Hughes,G.O.,Thullier,W.,Rebelo,A.G.,2006.Migrationratelimitationson

climatechange-inducedrangeshiftsinCapeProteaceae.Divers.Distrib.12,555-562.

Page 22: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

21

Mittermeier,R.A.,Meyers,N.,Thomsen,J.B.,1998.Biodiversityhotspotsandmajor

wildernessareas:approachestosettingconservationpriorities.Conserv.Biol.12,516-520.

Mittermeier,R.A.,RoblesGil,P.,Hoffman,M.,Pilgrim,J.,Brooks,T.,GoettschMittermeier,

C.,Lamoreaux,J.,DaFonseca,G.A.B.,2004.Hotspotsrevisited:earth'sbiologicallyrichest

andmostendangeredterrestrialecoregions.MexicoCity:ConservationInternational&

CEMEX.P.392.

Mucina,L.,Rutherford,M.C.,2006.(Eds.),TheVegetationofSouthAfrica,Lesothoand

Swaziland,Strelitzia19.SouthAfricanNationalBiodiversityInstitute,Pretoria.

Mucina,L.,Jürgens,N.,LeRoux,A.,Rutherford,M.C.,Schmiedel,U.,Esler,K.,Powrie,L.W.,

Desmet,P.G.,Milton,S.J.,2006.SucculentKarooBiome.In:Mucina,L.,Rutherford,M.C.

(Eds.),TheVegetationofSouthAfrica,LesothoandSwaziland,Strelitzia19.SouthAfrican

NationalBiodiversityInstitute,Pretoria,pp.221–299.

Musil,C.F.,vanHeerden,P.D.R.,Cilliers,C.D.,Schmiedel,U.,2009.Mildexperimental

climatewarminginducesmetabolicimpairmentandmassivemortalitiesinsouthernAfrican

quartzfieldsucculents.Environ.Exp.Bot.66,79-87.

Musil,C.F.,Nyaga,J.,Maphangwa,K.,Raitt,L.,2010.Responsesofdwarfsucculents,lichens

andsoilstoexperimentalclimatewarminginanaridSouthAfricanecosystem.In:Schmiedel,

U.,Jürgens,N.(Eds.),BiodiversityinSouthernAfrica.Vol.2:Patternsandprocessesat

RegionalScale,KlausHessPublishers,Göttingen,pp.246-250.

Nakicenovic,N.,Alcamo,J.,Davis,G.,deVries,B.,Fenhann,J.,GafN,S.,Gregory,K.,

Grübler,A.,Jung,T.Y.,Kram,T.,LebrelaRovere,E.,Michaelis,L.,Mori,S.,Morita,T.,Pepper,

W.,Pitcher,H.,Price,L.,Riahi,K.,Roehrl,A.,Rogner,H.H.,Sankovski,A.,Schlesinger,M.,

Shukla,P.,Smith,S.,Swart,R.,vanRooijen,S.,Victor,N.,Dadi,Z.,2000.(Eds.),Emissions

scenarios–aspecialreportoftheIntergovernmentalPanelonClimateChange(IPCC).

CambridgeUniversityPress,Cambridge.

Parry,M.L.,Canziani,O.F.,Palutikof,J.P.,etal.,2007.TechnicalSummary.In:Parry,M.L.,

Canziani,O.F.,Palutikof,J.P.,vanderLinden,P.J.,Hanson,C.E.,(Eds.),ClimateChange2007:

Impacts,AdaptationandVulnerability.ContributionofWorkingGroupIItotheFourth

Page 23: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

22

AssessmentReportoftheIntergovernmentalPanelonClimateChange,Cambridge

UniversityPress,Cambridge,pp.23-78.

Phillips,S.J.,Dudík,M.,Schapire,R.E.,2004.Amaximumentropyapproachtospecies

distributionmodelling.ProceedingsoftheTwenty-FirstInternationalConferenceon

MachineLearning2004,pp.655-662.

Phillips,S.J.,Anderson,R.P.,Schapire,R.E.,2006.Maximumentropymodellingofspecies

geographicdistributions.Ecol.Model.190,231-259.

Ramirez,J.,Jarvis,A.,2008.HighResolutionStatisticallyDownscaledFutureClimate

Surfaces.InternationalCenterforTropicalAgriculture(CIAT);CGIARResearchProgramon

ClimateChange,AgricultureandFoodSecurity(CCAFS).Cali,Colombia.http://www.ccafs-

climate.org/statistical_downscaling_delta/

Roeckner,E.,Bäuml,G.,Bonaventura,L.,Brokopf,R.,Esch,M.,Giorgetta,H.,Hagemann,S.,

Kirchner,I.,Kornblueh,L.,Manzini,E.,Rhodin,A.,Schlese,U.,Schulzweida,U.,Tompkins,A.,

2003.TheatmosphericgeneralcirculationmodelECHAM5.Part1:Modeldescription.Max

Plank-InstitutfürMeteorologie,ReportNo.349.

Rutherford,M.C.,Westfall,R.H.,1994.BiomesofsouthernAfrica:anobjective

characterisation.Mem.Bot.Soc.S.Afr.54,1-98.

Schmiedel,U.,Jürgens,N.,1999.Communitystructureandunusualhabitatislands:a

comparisonofquartzfieldvegetationintheKnersvlakteandLittleKarooofSouthernAfrica’s

SucculentKaroo.PlantEcol.142,57-69.

Schmiedel,U.,Dengler,J.,Etzold,S.,2012.Vegetationdynamicsofendemic-richquartz

fieldsintheSucculentKaroo,SouthAfrica,inresponsetorecentclimatictrends.J.Veg.Sci.

23,292-303.

Young,A.J.,Desmet,P.G.,2016.ThedistributionofthedwarfsucculentgenusConophytum.

Bothalia(InPress)

Page 24: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

23

Figurelegends

Fig.1ProjectedchangesinthegeographicrangeforindividualSectionsofthegenus

ConophytumundertheA1Bemissionsscenario:(A)SectionsBatrachiatoCylindrata;

(B)SectionsHerreanthustoWettsteinia.Thereddotsindicatecurrentlocationsfor

ConophytumtaxawithineachtaxonomicSection.Abbreviations:BARBarbata;BAT

Batrachia;BILBilobum;CATCataphracta;CHECheshire-Feles;CONConophytum;

COSCostata;CYLCylindrata;HERHerreanthus;MINMinuscula;OPH

Ophthalmophyllum;PELPellucida;SAXSaxetana;SUBSubfenestrata;VERVerrucosa;

WETWettsteinia(seeHammer,2002).

Fig.2ProjectedchangesinthegeographicrangeforindividualSectionsofthegenus

ConophytumundertheA2emissionsscenario:(A)SectionsBatrachiatoCylindrata;

(B)SectionsHerreanthustoWettsteinia.Thereddotsindicatecurrentlocationsfor

ConophytumtaxawithineachtaxonomicSection.SeeFig.1forabbreviations.

Fig.3Predictedlandareachangesfortherecognisedsectionsofthegenus

Conophytumunderemissionscenarios(A)A1B,(B)A2.SeeFig.1forabbreviations.

Fig.4Thevulnerabilityoftaxa(tosubspecieslevel)inthegenusConophytumto

climatechangeunderemissionscenariosA1B( )andA2( ).The

lossofexistingsuitablehabitathasbeenusedasameasureofthepotentialimpact

ofclimatechangeonataxonassumingazero-migrationmodel(assumedheretobe

mostappropriate).

Page 25: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 26: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 27: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 28: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 29: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 30: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 31: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 32: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

SUPPLEMENTARYINFORMATION

TableS1PredictedlandareachangesfortherecognisedsectionsofthegenusConophytumunderclimatechangescenariosA1Band

A2.SeeText/Tableforabbreviations.

AIB A2

Section Positivechange(%) Negativechange(%) Positivechange(%) Negativechange(%)

BAR 55.31 27.74 47.54 99.99

BAT 383.43 55.84 290.87 100.00

BIL 58.58 51.25 26.61 98.11

CAT 42.19 20.68 74.55 94.94

CHE 52.58 80.51 183.57 76.88

CON 1.81 94.59 0.79 99.03

COS 95.47 55.07 512.15 2.74

CYL 3.10 5.07 68.57 99.95

HER 133.51 38.33 298.65 72.73

MIN 29.99 78.40 41.33 77.53

OPH 31.16 50.39 72.88 68.02

PEL 1.64 56.86 73.79 100.00

SAX 7.03 72.44 0.06 100.00

SUB 123.45 1.13 263.76 70.70

VER 593.33 11.30 746.36 91.63

WET 31.05 45.26 15.52 99.26

Page 33: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

TableS2.ListofspeciesinthegenusConophytumasrecognisedbyHammerand

Young(2015).Localitydataforallthe159taxalistedherewasusedintheclimate

changemodelling.C.semivestitumandC.herreanthusssp.herreanthusarebothlost

inhabitatandthereforeexcludedfromthestudyaswerenaturalhybridsandany

collectionsofuncertaintaxonomy.Sections:BARBarbata;BATBatrachia;BIL

Bilobum;CATCataphracta;CHECheshire-Feles;CONConophytum;COSCostata;CYL

Cylindrata;HERHerreanthus;MINMinuscula;OPHOphthalmophyllum;PEL

Pellucida;SAXSaxetana;SUBSubfenestrata;VERVerrucosa;WETWettsteinia(see

Hammer,2002).

SPECIES SUBSPECIES SECTION

C.achabense

CHE

C.acutum

CHE

C.albiflorum

MIN

C.angelicae subsp.angelicae COS

C.angelicae subsp.tetragonum COS

C.antonii

MIN

C.armianum

BAT

C.arturolfago

PEL

C.auriflorum subsp.auriflorum MIN

C.auriflorum subsp.turbiniforme MIN

C.bachelorum

WET

C.bicarinatum

MIN

C.bilobum subsp.altum BIL

C.bilobum subsp.bilobum BIL

C.bilobum subsp.claviferens BIL

C.bilobum subsp.gracilistylum BIL

C.blandum

HER

C.bolusiae subsp.bolusiae WET

C.bolusiae subsp.primavernum WET

C.breve

CAT

C.brunneum

MIN

C.bruynsii

MIN

C.burgeri

CHE

C.buysianum subsp.buysianum CYL

C.buysianum subsp.politum CYL

C.calculus subsp.calculus CAT

C.calculus subsp.vanzylii CAT

C.caroli

OPH

C.carpianum

SAX

C.chauviniae

BIL

Page 34: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

C.chrisocruxum

WET

C.chrisolum

WET

C.comptonii

CON

C.concavum

SUB

C.concordans

OPH

C.cubicum

MIN

C.cylindratum

CYL

C.danielii

HER

C.depressum subsp.depressum BAR

C.depressum subsp.perdurans BAR

C.devium subsp.devium OPH

C.devium subsp.stiriiferum OPH

C.ectypum subsp.brownii MIN

C.ectypum subsp.cruciatum MIN

C.ectypum subsp.ectypum MIN

C.ectypum subsp.ignavum MIN

C.ectypum subsp.sulcatum MIN

C.ernstii subsp.cerebellum WET

C.ernstii subsp.ernstii WET

C.ficiforme

CON

C.flavum subsp.flavum WET

C.flavum subsp.novicium WET

C.francoiseae

WET

C.fraternum

WET

C.friedrichiae

OPH

C.frutescens

BIL

C.fulleri

MIN

C.globosum

WET

C.halenbergense

SAX

C.hammeri

CHE

C.hanae

MIN

C.hermarium

VER

C.herreanthus subsp.herreanthus HER

C.herreanthus subsp.rex HER

C.hians

SAX

C.hyracis

MIN

C.irmae

MIN

C.joubertii

CON

C.jucundum subsp.fragile WET

C.jucundum subsp.jucundum WET

C.jucundum subsp.marlothii WET

C.jucundum subsp.ruschii WET

C.khamiesbergense

CYL

C.klinghardtense subsp.baradii SAX

C.klinghardtense subsp.klinghardtense SAX

C.limpidum

OPH

Page 35: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

C.lithopsoides subsp.boreale PEL

C.lithopsoides subsp.koubergense PEL

C.lithopsoides subsp.lithopsoides PEL

C.loeschianum

SAX

C.longibracteatum

MIN

C.longum

OPH

C.luckhoffii

MIN

C.lydiae

OPH

C.marginatum subsp.haramoepense HER

C.marginatum subsp.littlewoodii HER

C.marginatum subsp.marginatum HER

C.maughanii subsp.armeniacum CHE

C.maughanii subsp.latum CHE

C.maughanii subsp.maughanii CHE

C.meyeri

BIL

C.minimum

CON

C.minusculum subsp.aestiflorens MIN

C.minusculum subsp.leipoldtii MIN

C.minusculum subsp.minusculum MIN

C.minutum

WET

C.mirabile

MIN

C.obcordellum subsp.obcordellum CON

C.obcordellum subsp.rolfii CON

C.obcordellum subsp.stenandrum CON

C.obscurum subsp.barbatum WET

C.obscurum subsp.obscurum WET

C.obscurum subsp.sponsaliorum WET

C.obscurum subsp.vitreopapillum WET

C.pageae

CAT

C.pellucidum subsp.cupreatum PEL

C.pellucidum subsp.pellucidum PEL

C.pellucidum subsp.saueri PEL

C.phoenicium

CHE

C.piluliforme subsp.edwardii CON

C.piluliforme subsp.piluliforme CON

C.pium

MIN

C.praesectum

OPH

C.pubescens

OPH

C.pubicalyx

BAR

C.quaesitum subsp.densipunctum SAX

C.quaesitum subsp.quaesitum SAX

C.ratum

CHE

C.reconditum

CYL

C.regale

HER

C.ricardianum subsp.ricardianum WET

C.roodiae subsp.corrugatum CYL

Page 36: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

C.roodiae subsp.roodiae CYL

C.roodiae subsp.sanguineum CYL

C.rugosum

CYL

C.saxetanum

SAX

C.schlechteri

WET

C.smaleorum

WET

C.smorenskaduense

VER

C.stephanii subsp.helmutii BAR

C.stephanii subsp.stephanii BAR

C.stevens-jonesianum

CAT

C.subfenestratum

SUB

C.subterraneum

CHE

C.swanepoelianum subsp.proliferans MIN

C.swanepoelianum subsp.rubrolineatum MIN

C.swanepoelianumsubsp.

swanepoelianum MIN

C.tantillum subsp.amicorum MIN

C.tantillum subsp.eenkokerense MIN

C.tantillum subsp.heleniae MIN

C.tantillum subsp.inexpectatum MIN

C.tantillum subsp.lindenianum MIN

C.tantillum subsp.tantillum MIN

C.taylorianum subsp.ernianum WET

C.taylorianum subsp.rosynense WET

C.taylorianum subsp.taylorianum WET

C.truncatum subsp.truncatum CON

C.truncatum subsp.viridicatum CON

C.turrigerum

MIN

C.uviforme subsp.decoratum CON

C.uviforme subsp.rauhii CON

C.uviforme subsp.subincanum CON

C.uviforme subsp.uviforme CON

C.vanheerdei

VER

C.velutinum subsp.polyandrum BIL

C.velutinum subsp.velutinum BIL

C.verrucosum

VER

C.violaciflorum

MIN

C.wettsteinii

WET

C.youngii

CYL

Page 37: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 38: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

TableS4ContributionofvariablesforthepresentdistributionofConophytumSections.Abbreviations:BARBarbata;BATBatrachia;BILBilobum;

CATCataphracta;CHECheshire-Feles;CONConophytum;COSCostata;CYLCylindrata;HERHerreanthus;MINMinuscula;OPH

Ophthalmophyllum;PELPellucida;SAXSaxetana;SUBSubfenestrata;VERVerrucosa;WETWettsteinia(seeHammer,2002).Tmaxmaximum

temperature;Tminminimumtemperature;Tavaveragetemperature;Pavaveragerainfall.

Page 39: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent

SECTION

VARIABLE BAR BAT BIL CAT CHE CON COS CYL HER MIN OPH PEL SAX SUB VER WET

Altitude 6.6185 1 0.3327 1.0388 4.4519 6.8379 5.1619 3.0104 13.9571 2.1215 11.9062 7.0852 0.4262 5.8784 19.5937 0.0203

Q1Tmax 0.0816 0.635 0.4526 1.8046 2.2861 4.4176 0.1137 0.4215 3.9857 0.7157 5.733 0.2381 6.8026 3.3825 7.2639 3.984

Q1Tmin 0 0 0.0012 0.0841 1.6157 1.9308 0 0.2241 3.8253 0.0158 0.5144 0.1295 0 0 0.336 0.174

Q1Pav 29.171 47.0995 47.9971 37.9045 1.7774 19.8368 0.2117 0.8229 0.2511 24.3119 0.7942 16.6466 44.4089 44.8801 14.6578 55.7121

Q1Tav 0 0 2.9185 0.1029 0.0308 0.2328 5.9636 0 0.0382 0.0467 0.0334 0 0.1052 0 0.7431 0.3443

Geology1 20.2934 17.3311 7.8256 29.491 42.9386 1.6521 40.4549 63.0088 54.6992 3.799 38.7484 47.6936 11.7368 10.819 46.6766 6.8834

Q2Tmax 2.0612 0 1.2705 0.2859 0.3147 0.4588 0.0666 0 0.0586 4.9733 0.0311 0.0442 0 0 0 0.0654

Q2Tmin 0.0457 0 0.4934 0.7646 7.0381 0.6145 0.8248 0.0332 0.9129 0.2436 1.1297 0.139 0.0473 4.1181 5.1898 0.1108

Q2Pav 0.0502 0.301 6.1322 2.025 8.099 6.0773 7.0504 0.2983 0.1214 1.305 10.4734 0.0268 16.1713 3.7533 0 13.9128

Q2Tav 0 0 0.0039 0.1755 0.0877 0.4793 0 0.1308 0 0.154 0.0112 0.0016 0 0 0 0

Geology2 12.8076 0.4653 2.1824 2.9662 1.4033 0.1268 15.0572 0 6.5485 25.4172 0.5325 0.7175 1.4932 0.1162 0 0.0465

Q3Tmax 0.0557 0 0.0433 1.0136 0.9736 0.2132 0 0 0.0613 8.2232 0.9662 0.0199 0.2119 0 0 0.0835

Q3Tmin 0.3915 12.2113 2.6293 4.1786 1.158 0.431 0 0.0164 0.2969 3.6665 14.5586 0.1543 0.2919 0 0 0.9547

Q3Pav 24.7613 0.932 15.1277 16.1056 27.2111 49.4262 22.6823 31.7284 13.8596 12.7844 14.4477 25.5238 2.1197 26.1922 5.5344 14.1914

Q3Tav 0 0 0.6716 0.2689 0.1288 0.4062 0 0 0 3.5007 0 0 0 0.588 0 0.034

Terrain 0.0029 8.4315 1.4723 0 0 5.9583 0.6942 0 0 3.74 0 0 7.0351 0 0 1.5032

Q4Tmax 0 0.0501 4.8427 0.0355 0.0106 0.0452 0 0 0 0.4684 0 0.0549 0 0 0 0.4269

Q4Tmin 0 0 0.0493 0.148 0.3272 0.071 1.1723 0.0144 0.0982 1.3121 0.0941 1.0573 0 0 0 1.0011

Q4Pav 3.6593 11.543 5.4734 1.568 0.1475 0.7688 0 0.2909 1.2861 3.1885 0.0258 0.4193 9.1497 0.2721 0.0047 0.1567

Q4Tav 0 0 0.0804 0.0388 0 0.0153 0.5465 0 0 0.0124 0 0.0486 0 0 0 0.3948

Page 40: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 41: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 42: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent
Page 43: LJMU Research Onlineresearchonline.ljmu.ac.uk/2882/1/Young et al 2016 OA version small.pdf · dwarf succulent genus Conophytum (Aizoaceae) within areas ... , namely the Succulent