Lipid

32
Lecture 5: Lecture 5: Lipids Lipids and and Carbohydrates Carbohydrates Craig Kasper Craig Kasper Fish Nutrition Fish Nutrition

description

Lipid

Transcript of Lipid

Page 1: Lipid

Lecture 5: Lecture 5: LipidsLipids and and CarbohydratesCarbohydrates

Craig KasperCraig Kasper

Fish NutritionFish Nutrition

Page 2: Lipid

Part 1: Lipid Part 1: Lipid CharacteristicsCharacteristics

LipidLipid = a compound that is = a compound that is insoluble in water, but soluble in insoluble in water, but soluble in an organic solvent (e.g., ether, an organic solvent (e.g., ether, benzene, acetone, chloroform)benzene, acetone, chloroform)

““lipid” is synonymous with “fat”, lipid” is synonymous with “fat”, but also includes phospholipids, but also includes phospholipids, sterols, etc.sterols, etc.

chemical structure: glycerol + chemical structure: glycerol + fatty acidsfatty acids

Page 3: Lipid

Lipid MoleculeLipid Molecule

Page 4: Lipid

Nutritional Uses of Nutritional Uses of LipidsLipids

We already know that lipids are concentrated We already know that lipids are concentrated sources of energy (9.45 kcal/g)sources of energy (9.45 kcal/g)

other functions:other functions:

1) provide means whereby fat-soluble 1) provide means whereby fat-soluble nutrients (e.g., sterols, vitamins) can be nutrients (e.g., sterols, vitamins) can be absorbed by the bodyabsorbed by the body

2) structural element of cell, subcellular 2) structural element of cell, subcellular componentscomponents

3) components of hormones and precursors for 3) components of hormones and precursors for prostaglandin synthesisprostaglandin synthesis

Page 5: Lipid

Lipid ClassesLipid Classes simplesimple: : FA’s esterified with glycerolFA’s esterified with glycerol compoundcompound: : same as simple, but with other same as simple, but with other compounds also attachedcompounds also attached

phospholipidsphospholipids: : fats containing phosphoric fats containing phosphoric acid and nitrogen (lecithin)acid and nitrogen (lecithin)

glycolipidsglycolipids: : FA’s compounded with CHO, but no FA’s compounded with CHO, but no NN

derivedderived lipidslipids: : substances from the above substances from the above derived by hydrolysisderived by hydrolysis

sterolssterols: : large molecular wt. alcohols found large molecular wt. alcohols found in nature and combined w/FA’s (e.g., in nature and combined w/FA’s (e.g., cholesterol)cholesterol)

Page 6: Lipid

Saturated vs. Unsaturated Fatty Saturated vs. Unsaturated Fatty AcidsAcids

saturatedsaturated: the SFA’s of a lipid have no : the SFA’s of a lipid have no double bonds between carbons in chaindouble bonds between carbons in chain

polyunsaturatedpolyunsaturated: more than one double : more than one double bond in the chainbond in the chain

most common polyunsaturated fats contain most common polyunsaturated fats contain the polyunsaturated fatty acids (PUFAs) the polyunsaturated fatty acids (PUFAs) oleicoleic, , linoleiclinoleic and and linoleniclinolenic acid acid

unsaturated fats have lower melting unsaturated fats have lower melting points points

stearic (SFA) melts at 70stearic (SFA) melts at 70ooC, oleic (PUFA) C, oleic (PUFA) at 26at 26ooCC

Page 7: Lipid

Fatty Acids Commonly Found in Fatty Acids Commonly Found in LipidsLipids

Sat. Fatty Acids Formula Melting Point (oC) Butyric C4H8O2 Liquid Palmitic C16H22O2 63 Stearic C18H36O2 70 Unsat. Fatty Acids Formula Melting Point (oC) Oleic C18H34O2 Liquid Linoleic C18H32O2 Liquid Linolenic C18H30O2 Liquid

Page 8: Lipid

Saturated vs. Unsaturated Saturated vs. Unsaturated FatsFats

saturated fats tightly packed, clog saturated fats tightly packed, clog arteries as arteries as atherosclerosisatherosclerosis

because of double bonds, polyunsaturated because of double bonds, polyunsaturated fats do not pack well -- like building a fats do not pack well -- like building a wall with bricks (sat.) vs. irregular-wall with bricks (sat.) vs. irregular-shaped objects (unsat.)shaped objects (unsat.)

plant fats are much higher in PUFA’s than plant fats are much higher in PUFA’s than animal fatsanimal fats

Page 9: Lipid

Saturated vs. Unsaturated FA’s Saturated vs. Unsaturated FA’s Plant vs. Animal FatPlant vs. Animal Fat

corn soy tallow lard Sat. FA’s Myristic 3 Palmitic 7.0 8.5 27 32.2 Stearic 2.4 3.5 21 7.8 Unsat. FA’s

Oleic 45.6 17 40 48 Linoleic 45.0 54.4 2 11 Linolenic 7.1 0.5 0.6 Arachid.

Page 10: Lipid

Lipid Lipid Digestion/AbsorptionDigestion/Absorption

Fats serve a structural function in cells, as Fats serve a structural function in cells, as sources of energy, and insulationsources of energy, and insulation

the poor water solubility of lipids presents the poor water solubility of lipids presents a problem for digestion: substrates are not a problem for digestion: substrates are not easily accessible to digestive enzymeseasily accessible to digestive enzymes

even if hydrolyzed, the products tend to even if hydrolyzed, the products tend to aggregate to larger complexes that make poor aggregate to larger complexes that make poor contact with the cell surface and aren’t contact with the cell surface and aren’t easily absorbedeasily absorbed

to overcome these problems, changes in the to overcome these problems, changes in the physical state of lipids are connected to physical state of lipids are connected to chemical changes during digestion and chemical changes during digestion and absorptionabsorption

Page 11: Lipid

Lipid Lipid Digestion/AbsorptionDigestion/Absorption

Five different phases:Five different phases: hydrolysishydrolysis of triglycerides (TG) to free of triglycerides (TG) to free fatty acids (FFA) and monoacylglycerolsfatty acids (FFA) and monoacylglycerols

solubilizationsolubilization of FFA and monoacylglycerols of FFA and monoacylglycerols by detergents (bile acids) and by detergents (bile acids) and transportation from the intestinal lumen transportation from the intestinal lumen toward the cell surfacetoward the cell surface

uptakeuptake of FFA and monoacylglycerols into of FFA and monoacylglycerols into the cell and resynthesis to triglyceridethe cell and resynthesis to triglyceride

packagingpackaging of TG’s into chylomicrons of TG’s into chylomicrons exocytosisexocytosis of chylomicrons into lymph of chylomicrons into lymph

Page 12: Lipid

Enzymes Involved in Enzymes Involved in Digestion of LipidsDigestion of Lipids

lingual lipaselingual lipase: provides a stable : provides a stable interface with aqueous environment of interface with aqueous environment of stomachstomach

pancreatic lipasepancreatic lipase: major enzyme affecting : major enzyme affecting triglyceride hydrolysistriglyceride hydrolysis

colipasecolipase: protein anchoring lipase to the : protein anchoring lipase to the lipidlipid

lipid esteraselipid esterase: secreted by pancreas, acts : secreted by pancreas, acts on cholestrol esters, activated by bileon cholestrol esters, activated by bile

phospholipasesphospholipases: cleave phospholipids, : cleave phospholipids, activated by trypsinactivated by trypsin

Page 13: Lipid

What about Bile???What about Bile??? These are These are biological detergents biological detergents synthesized synthesized by the liver and secreted into the intestineby the liver and secreted into the intestine

they form the spherical structures they form the spherical structures ((micellesmicelles) assisting in absorption) assisting in absorption

hydrophobic portion (tails of FA) are hydrophobic portion (tails of FA) are located to the inside of the micelle, with located to the inside of the micelle, with heads (hydrophillic portion) to the outsideheads (hydrophillic portion) to the outside

they move lipids from the intestinal lumen they move lipids from the intestinal lumen to the cell surfaceto the cell surface

absorption is by diffusion (complete for FA absorption is by diffusion (complete for FA and monoglycerides, less for others) and monoglycerides, less for others)

Page 14: Lipid

Factors Affecting Absorption of Factors Affecting Absorption of LipidsLipids

amount of fat consumedamount of fat consumed ((fat=fat=digestion=digestion=absorption)absorption)

age of subjectage of subject ( ( age = age = digestion) digestion) emulsifying agents emulsifying agents (( digestion = digestion = absorption)absorption)

chain length of FA’schain length of FA’s (> 18C = (> 18C = digestibility) digestibility) degree of saturation of FAdegree of saturation of FA ( ( sat = sat = digestibility)digestibility)

overheating and autooxidationoverheating and autooxidation (rancidification (rancidification (rot) at double bond)(rot) at double bond)

optimal optimal dietary calciumdietary calcium = optimal FA absorption = optimal FA absorption (high Ca = (high Ca = absorption) absorption)

Page 15: Lipid

Lipid Lipid Metabolism/AbsorptionMetabolism/Absorption

short chain FA’s are absorbed and enter short chain FA’s are absorbed and enter the portal vein to the liverthe portal vein to the liver

those FA’s with more than 10 carbons are those FA’s with more than 10 carbons are resynthesized by the liver to resynthesized by the liver to triglyceridestriglycerides

they are then converted into chylomicrons they are then converted into chylomicrons and pass to the lymphatic systemand pass to the lymphatic system

some FA’s entering the liver are oxidized some FA’s entering the liver are oxidized for energy, others storedfor energy, others stored

blood lipids: 45% P-lipids, 35% blood lipids: 45% P-lipids, 35% triglycerides, 15% cholestrol esters, 5% triglycerides, 15% cholestrol esters, 5% free FA’sfree FA’s

Page 16: Lipid

Lipid Lipid DigestionDigestion/Absorpti/Absorpti

on on

Page 17: Lipid

Lipid Lipid DigestionDigestion/Absorpti/Absorpti

onon

Page 18: Lipid

Characteristics of Fat Characteristics of Fat StorageStorage

Most of the body’s energy stores Most of the body’s energy stores are triglyceridesare triglycerides

storage is in adipose, source is storage is in adipose, source is dietary or anabolism (synthesis) dietary or anabolism (synthesis) from COH or AA carbon skeletonsfrom COH or AA carbon skeletons

remember obesity?remember obesity? adipose can remove FA’s from the adipose can remove FA’s from the blood and enzymes can put them blood and enzymes can put them back back

Page 19: Lipid

Fatty Acid Fatty Acid NomenclatureNomenclature

Nomenclature reflects location of Nomenclature reflects location of double bondsdouble bonds

also used are common names (e.g., also used are common names (e.g., oleic, stearic, palmitic)oleic, stearic, palmitic)

linoleic is also known as 18:2 n-6linoleic is also known as 18:2 n-6 this means the FA is 18 carbons in this means the FA is 18 carbons in length, has 2 double bonds, the length, has 2 double bonds, the first of which is on the 6th carbonfirst of which is on the 6th carbon

arachidonic = 20:4 n-6arachidonic = 20:4 n-6

Page 20: Lipid

What’s in a Name??What’s in a Name??

Fatty Acid NomenclatureFatty Acid Nomenclature

Page 21: Lipid

Essential Fatty Essential Fatty AcidsAcids

Only recently determined as essential Only recently determined as essential (1930)(1930)

body can synthesize cholesterol, body can synthesize cholesterol, phospholipidsphospholipids

research: same as AA’s but via addition research: same as AA’s but via addition (EFA’s added improved growth, NEFA’s (EFA’s added improved growth, NEFA’s didn’t)didn’t)

requirement determined by depleting fat requirement determined by depleting fat reserves of subject animal: difficultreserves of subject animal: difficult

Page 22: Lipid

Essential Fatty Acids Essential Fatty Acids (fish)(fish)

Most NEAA found in marine food websMost NEAA found in marine food webs Essential fatty acids (to date):Essential fatty acids (to date):

– linoleiclinoleic (18:2 n-6; terrestrials; fish - (18:2 n-6; terrestrials; fish - not really)not really)

– linoleniclinolenic (18:3 n-3; terrestrials; fish) (18:3 n-3; terrestrials; fish)– arachidonic arachidonic (20:4 n-6; marine maybe)(20:4 n-6; marine maybe)– eicosopentaenoiceicosopentaenoic acid (20:5 n-3, marine) acid (20:5 n-3, marine)– docosohexaenoicdocosohexaenoic (22:6 n-3, marine) (22:6 n-3, marine)

Why? Because elongation beyond 18 carbons is Why? Because elongation beyond 18 carbons is very difficult in marine fish (lack pathways)very difficult in marine fish (lack pathways)

actual EFA requirement is a matter of whether actual EFA requirement is a matter of whether the fish is FW/SW or WW/CWthe fish is FW/SW or WW/CW

Page 23: Lipid

Essential Fatty Acids (most Essential Fatty Acids (most animals)animals)

salmonids need n-3 FA’s for membrane salmonids need n-3 FA’s for membrane flexibility in cold water (why does this flexibility in cold water (why does this work?)work?)

trout can elongate and desaturate n-3 FA’s trout can elongate and desaturate n-3 FA’s Linoleic acid (18:2 n-6) is the most Linoleic acid (18:2 n-6) is the most essentialessential

addition of arachidonic is also helpful in addition of arachidonic is also helpful in deficient diets, but can be synthesized deficient diets, but can be synthesized from linoleic (maybe sparing effect)from linoleic (maybe sparing effect)

EFA’s, like EAA’s, must be dietaryEFA’s, like EAA’s, must be dietary

Page 24: Lipid

Essential Fatty Essential Fatty AcidsAcids

LINOLEIC CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH

18:2 n-6

LINOLENIC CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH

18:3 n-3

EICOSOPENTAENOIC ACID

CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH

20:5 n-3

DOCOSOHEXAENOIC ACID - YOU CAN DO THIS ONE!

Page 25: Lipid

Lipids as Crustacean Energy Lipids as Crustacean Energy SourcesSources

Largely, n-6 FA’s (linoleic) used for Largely, n-6 FA’s (linoleic) used for energyenergy

as temperature drops, requirement for as temperature drops, requirement for monounsaturated and PUFA’s increasesmonounsaturated and PUFA’s increases

change in temperature = change in dietchange in temperature = change in diet cold water species = increased dietary cold water species = increased dietary HUFA’sHUFA’s

maturation animals: increased requirement maturation animals: increased requirement for 20:4 n-6, 20:5 n-3 and 22:6 n-3 for for 20:4 n-6, 20:5 n-3 and 22:6 n-3 for proper spawningproper spawning

Page 26: Lipid

Part 2: Part 2: Carbohydrate Carbohydrate

CharacteristicsCharacteristics

From: Lovell; D’Abramo From: Lovell; D’Abramo et al. et al.

Page 27: Lipid

General CommentsGeneral Comments

Carbohydrates often written as “COH”Carbohydrates often written as “COH” much of what we need to know about much of what we need to know about them, besides their structure, was them, besides their structure, was covered in “Bioenergetics, Parts covered in “Bioenergetics, Parts 1&2”1&2”

here, we cover structurehere, we cover structure

Page 28: Lipid

Carbohydrate StructureCarbohydrate Structure

Basic chemical structure Basic chemical structure consists of sugar unitsconsists of sugar units

found as aldehydes or ketones found as aldehydes or ketones derived from polyhydric derived from polyhydric alcoholsalcohols

contain: C, H, Ocontain: C, H, O often shown as aliphatic or often shown as aliphatic or linear structures, but exist in linear structures, but exist in nature as ringed structuresnature as ringed structures

Page 29: Lipid

Glucose StructureGlucose Structure

O

C-H

H- C-OH

HO-C-H

H-C-OH

H-C-OH

CH2OH

CH2OH

OH

HO

OH

H

H

OH

H

OH

Haworth perspective

Page 30: Lipid

Carbohydrate Carbohydrate ClassificationClassification

Usually by the number of sugar units Usually by the number of sugar units in the molecule:in the molecule:– monosaccharidesmonosaccharides (glucose) (glucose)– disaccharidesdisaccharides (2 units) (2 units)

maltose (2 glucose units)maltose (2 glucose units) sucrose (glucose + fructose)sucrose (glucose + fructose)

– polysaccharidespolysaccharides (long chain (long chain polymers of monosaccharidespolymers of monosaccharides

– most important polysaccharides to most important polysaccharides to animals are starch and celluloseanimals are starch and cellulose

Page 31: Lipid

Starch Starch and and CelluloseCelluloseCH2OH

OH

OH

H

H

OH

H

CH2OH

OH

OH

H

H

OH

H

OO O

CH2OH

OH

OH

H

H

OH

CH2OH

O

OH

H

H

OH

H

OO

H

H

O

starch

cellulose

Page 32: Lipid

Starch and CelluloseStarch and Cellulose Starch contains Starch contains -D-glucose linkage-D-glucose linkage Cellulose has a Cellulose has a -D-glucose linkage-D-glucose linkage we store starch in muscle tissues we store starch in muscle tissues as as glycogenglycogen, peeled off by enzymes , peeled off by enzymes when neededwhen needed

cellulose is primary component of cellulose is primary component of plant tissue, largely indigestible plant tissue, largely indigestible to monogastricsto monogastrics

must have enzyme, “must have enzyme, “cellulasecellulase””