Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

28
Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck

Transcript of Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Page 1: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Linear RoundIntegrality Gapsfor the

Lasserre Hierarchy

Grant Schoenebeck

Page 2: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut IP

}1,0{

2max),(

i

Ejijiji

xVi

xxxx

Given graph GPartition vertices into two sets toMaximize # edges crossing partition

Page 3: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut IP Homogenized

iii

Ejijiji

xxxxVi

x

xxxxxx

0

20

),(00

1

2max

Page 4: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut SDP [GW94]

2

0

2

0

),(00

,

1

,2,,max

ii

Ejijiji

vvvVi

v

vvvvvv

Integrality Gap = min

Integrality Gap = ) – Approximation AlgorithmIntegrality Gap ¸ .878… (rounding)[GW]Integrality Gap · .878… (bad instance) [FS]

Integral SolutionSDP Solution

Page 5: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut SDP

2

0

2

0

),(00

,

1

,2,,max

ii

Ejijiji

vvvVi

v

vvvvvv

884.0552.4

4

Solution SDP

Solution Integral Gapy Integralit

0

14

23

v0

v1

v4

v2

v3

Page 6: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut SDP and ▲ inequality

222

0

20

),(00

,,

1

2max

kjjiki

iii

Ejijiji

xxxxxxVkji

xxxxVi

x

xxxxxx

Page 7: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut SDP and ▲ inequality

222

2

0

2

0

),(00

,,

,

1

,2,,max

kjjiki

ii

Ejijiji

vvvvvvVkji

vvvVi

v

vvvvvv

SDP value of 5-cycle = 4 General Integrality Gap Remains 0.878…

[KV05]

Page 8: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut IP r-juntas Homogenized

gfgf

gfgf

V

Ejiji

xxx

xxxx

gf

gfgfrgfgf

x

x

''

21

),(

0

juntas- 1,01,0,,,

1

max

Page 9: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Max Cut Lasserre r-rounds

gfgf

gfgf

V

Ejiji

vvvgf

vvvvgfgf

rgfgf

v

v

0

,,

juntas- 1,01,0,,,

1

max

''

2

1

),(

2

Page 10: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

CSP Maximization IP

gfgf

gfgf

V

cc

xxx

xxxx

gf

gfgfrgfgf

x

x

''

21

sconstraint

0

juntas- 1,01,0,,,

1

max

Page 11: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

CSP Maximization Lasserre r-rounds SDP

gfgf

gfgf

V

cc

vvvgf

vvvvgfgf

rgfgf

v

v

0

,,

juntas- 1,01,0,,,

1

max

''

2

1

contraints

2

Page 12: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

CSP Satisfaction IP

gfgf

gfgf

V

c

xxx

xxxx

gf

gfgfrgfgf

xc

x

''

21

0

juntas- 1,01,0,,,

1sconstraint

1

Page 13: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

CSP SatisfiablityLasserre r-rounds SDP

gfgf

gfgf

V

c

vvvgf

vvvvgfgf

rgfgf

vc

v

0

,,

juntas- 1,01,0,,,

1sconstraint

1

''

2

2

1

Page 14: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Lasserre Facts Runs in time nr

Strength of Lasserre Tighter than other hieracheis

Serali-Adams Lavasz-Schrijver (LP and SDP)

r-rounds imply all valid constraints on r variables tight after n rounds

Few rounds often work well 1-round ) Lovasz -function 1-round ) Goemans-Williamson 3-rounds ) ARV sparsest cut 2-rounds ) MaxCut with ▲inequality

In general unknown and a great open question

Page 15: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Main Result

Theorem: Random 3XOR instance not refuted by (n) rounds of Lasserre

3XOR: =

0

1

0

651

743

721

xxx

xxx

xxx

Page 16: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Previous LS+ Results

3-SAT 7/8+ (n) LS+ rounds [AAT]Vertex Cover 7/6- 1 rounds [FO] 7/6- (n) LS+ rounds [STT] 2- (√log(n)/loglog(n)) LS+ rounds [GMPT]

Page 17: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

LB for Random 3XOR

Theorem: Random 3XOR instance not refuted by (n) rounds of Lasserre

Proof: Random 3XOR cannot be refuted by

width-w resolutions for w = (n) [BW]

No width-w resolution ) no w/4-Lasserre refutation

Page 18: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Width w-Resolution

Combine if result has · w variables

1861 xxx 0876 xxx

171 xx

071 xx

10

Page 19: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Width w-Resolution

Combine if result has · w variables

1861 xxx 0876 xxx 071 xx

Page 20: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Idea / Proof ) width-2r Res ) F = linear functions “in” L(r) = linear function of r-variables

L1, L2 2 F Å ) L1 Δ L2 2 ξ=L(r)/F = {[Ø][L*

2], [L*2], …}

Good-PA = Partial assignment that satisfies ~ ,

for every Good-PA: = for every Good-PA:

1Δ1

0Δ1*

*

LL

LLL

Page 21: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Idea / Proof L(r) = linear function of r-variables F = linear functions in C ξ = L(r)/F = {[Ø][L*

2], [L*2], …}

C1Δ1

C0Δ1

LL

LLL

][][

)()(ˆs

nSf eSSfv

cv

eIev

eIev

x

c

Ix

Ix

IiIi

iIi

iIi

if ),0,0,1(2

1)(

2

12

1)(

2

12

1

2

1

][][1

][][0

)()(ˆ])([

][

SSfXvXS

f

gfgf

gfgf

V

c

vvvgf

vvvvgfgf

rgfgf

vc

v

0

,,

juntas- 1,01,0,,,

1sconstraint

1

''

2

2

1

Page 22: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Multiplication Check

][

][ ][

][ ][

][

)()(

)(ˆ)(ˆ)(

)(ˆ)()(ˆ)(

])([ˆ])([ˆ

,

Y

Y nX

nX Y

X

gf

YfgY

YXgXfY

YXgYXXfX

xgxf

vv

^

Page 23: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Corollaries

Meta-Corollary: Reductions easyThe (n) level of Lasserre: Cannot refute K-SAT IG of ½ + for Max-k-XOR IG of 1 – ½k + for Max-k-SAT IG of 7/6 + for Vertex Cover IG ½ + for UniformHGVertexCover IG any constant for

UniformHGIndependentSet

Page 24: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Pick random 3SAT formula Pretend it is a 3XOR formula

Use vectors from 3XOR SDP to satisfy 3SAT SDP

Corollary I

Random 3SAT instances not refuted by (n) rounds of Lasserre

1 kjikji xxxxxx

gfgf

gfgf

V

c

vvvgf

vvvvgfgf

rgfgf

vc

v

0

,,

juntas- 1,01,0,,,

1sconstraint

1

''

2

2

1

22

\

2

\

SATcSATcXORcXORc

SATcSATcXORcXORc

vvv

vvv

Page 25: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Corollary II, III

Integrality gap of ½ + ε after (n) rounds of Lasserre forRandom 3XOR instance

Integrality gap of 7/8 + ε after (n) rounds of Lasserre forRandom 3SAT instance

Page 26: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Vertex Cover Corollary

Integrality gap of 7/6 - ε after (n) rounds of Lasserre for Vertex Cover

FGLSS graphs from Random 3XOR formula (m = cn clauses)

(y1, …, yn) Lasr(VC) (1-y1, …, 1-yn) Lasr(IS)

Transformation previously constructed vectors

x1 + x2 + x3 = 1001

100111

010

x3 + x4 + x5 = 0

101

110

011

000

Page 27: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

SDP Hierarchies from a Distance

Approximation Algorithms Unconditional Lower

Bounds Proof Complexity Local-Global Tradeoffs

Page 28: Linear Round Integrality Gaps for the Lasserre Hierarchy Grant Schoenebeck.

Future Directions

Other Lasserre Integrality Gaps Positive Results Relationship to Resolution