Linear Equation and Matrices

download Linear Equation and Matrices

of 138

Transcript of Linear Equation and Matrices

  • 8/12/2019 Linear Equation and Matrices

    1/138

    1

    CHAPTER 1

    Systems of Linear Equations and

    Matrices

  • 8/12/2019 Linear Equation and Matrices

    2/138

    prepared by Razana Alwee

    2

  • 8/12/2019 Linear Equation and Matrices

    3/138

  • 8/12/2019 Linear Equation and Matrices

    4/138

  • 8/12/2019 Linear Equation and Matrices

    5/138

    (values s1,s2,..snare substitute for x1,x2,.xn)

  • 8/12/2019 Linear Equation and Matrices

    6/138

  • 8/12/2019 Linear Equation and Matrices

    7/138

    Solution

  • 8/12/2019 Linear Equation and Matrices

    8/138

    Example

    Determine whether either of the points (1,5)

    and (0,2) is a solution to the given system of

    equations.

    y= 3x2

    y=x6

    prepared by Razana Alwee

    8

    To check the given possible solutions, just plug the x-and y-coordinates into the equations, and check to

    see if they work.

    How?

  • 8/12/2019 Linear Equation and Matrices

    9/138

    Solution

    checking (1,5):

    (5) = 3(1)2

    5 =325 =5 (solution checks)

    (5)=(1)6

    5 = 16

    5 =5 (solution checks)

    Since the given point works in each equation, it is a

    solution to the system.

    prepared by Razana Alwee

    9

  • 8/12/2019 Linear Equation and Matrices

    10/138

  • 8/12/2019 Linear Equation and Matrices

    11/138

  • 8/12/2019 Linear Equation and Matrices

    12/138

    (unique or infinite solutions)

  • 8/12/2019 Linear Equation and Matrices

    13/138

    Unique Solution

    A system,

    The point where the lines cross {x=3.6, y=0.4} is thesolution that satisfies both equations simultaneously.

    The solution is unique and consistent.

    13

  • 8/12/2019 Linear Equation and Matrices

    14/138

    Consistent

  • 8/12/2019 Linear Equation and Matrices

    15/138

    Infinite Many Solutions

    A systems,

    This system is redundant because the second equation

    is equivalent to the first one.

    They 'cross' at an infinite number of points, so there are

    an infinite number of solutions

    Consistent

    prepared by Razana Alwee

    15

  • 8/12/2019 Linear Equation and Matrices

    16/138

    (Consistent)

  • 8/12/2019 Linear Equation and Matrices

    17/138

    No Solutions

    A system

    consists of two parallel lines that never cross. Thus

    there is no solution.

    Inconsistent 17

    (1)

    (2)

  • 8/12/2019 Linear Equation and Matrices

    18/138

    (Inconsistent)

  • 8/12/2019 Linear Equation and Matrices

    19/138

    Solving Linear System

    Matrices are helpful in rewriting a linear system in a very

    simple form.

    Matrix form, AX= B

    prepared by Razana Alwee

    19

    mnmm

    n

    n

    aaa

    aaa

    aaa

    A

    :

    :::::

    :

    21

    22221

    11211

    nx

    x

    x

    X:

    2

    1

    nb

    b

    b

    B:

    2

    1

    ,

  • 8/12/2019 Linear Equation and Matrices

    20/138

  • 8/12/2019 Linear Equation and Matrices

    21/138

  • 8/12/2019 Linear Equation and Matrices

    22/138

  • 8/12/2019 Linear Equation and Matrices

    23/138

    A matrix is said to be row-echelon form if the following

    conditions are satisfied:

    Every row with all 0 entries is below every row with

    nonzero entriesEach leading entry of a row is in a column to the right of the

    leading entry of the row above it(leading entry-any nonzero

    value)

    (The second row starts with more zero than the first(left to

    right)All entries in a column below a leading entry are zeros.

    Row-echelon Matrices

  • 8/12/2019 Linear Equation and Matrices

    24/138

    prepared by Razana Alwee

    24

    0 0 0 0 0 0

    0 0 0 0 0 #

    0 0 # * * *

    # * * * * *#-leading entry(left most

    non zero entry)*-any number/values including 0

    Row-echelon Matrices

  • 8/12/2019 Linear Equation and Matrices

    25/138

  • 8/12/2019 Linear Equation and Matrices

    26/138

    prepared by Razana Alwee

    26

    (0s below and

    above each

    leading 1) 0 0 0 0 0 00 0 0 0 0 10 0 1 * * 0# * 0 * * 0

    Reduced Row-echelon Matrices

  • 8/12/2019 Linear Equation and Matrices

    27/138

  • 8/12/2019 Linear Equation and Matrices

    28/138

  • 8/12/2019 Linear Equation and Matrices

    29/138

    or row-echelon form

  • 8/12/2019 Linear Equation and Matrices

    30/138

    Elementary Row Operation

    Elementary row operations can be used to transform thematrix into its row-echelon form. If we denote row 1 byR1, row 2 by R2, etc., and ais a scalar, the threeelementary row operations are as follows:

    1) Swap two rows (equations), denoted R1R2 (this wouldswap rows 1 and 2)

    2) Multiply a row by a nonzero scalar, denoted aR1 (thiswould multiply row 1 by k)

    3) Add a multiple of a row to another row, denoted R1 +aR2 (this would add ktime row 2 to row 1, and replacethe previous row 1)

  • 8/12/2019 Linear Equation and Matrices

    31/138

    Example

    Given is a linear equation system,

    Augmented form

    124

    423

    72

    221

    321

    321

    xxx

    xxx

    xxx

    1

    47

    241

    123112

  • 8/12/2019 Linear Equation and Matrices

    32/138

    Example (cont.)

    Swap two rows

    14

    7

    241123

    112R

    1 R

    3

    74

    1

    112123

    241

  • 8/12/2019 Linear Equation and Matrices

    33/138

    Multiply row 1 with a =3 = 3R1and add the multiple row

    to another row, R2

    122 3RRR

    7)1(34

    7)2(31

    14)4(32

    0)1(33

    7

    71

    112

    7140241

    3 122 RRR

    7

    4

    1

    112

    123

    241

    The notation means to take row 2 and subtract 3 times

    row 1 from it to produce the new augmented matrix.

    Example (cont.)

  • 8/12/2019 Linear Equation and Matrices

    34/138

  • 8/12/2019 Linear Equation and Matrices

    35/138

    Bi Bi

    Bi Bi

    Bi +Bi Bj

  • 8/12/2019 Linear Equation and Matrices

    36/138

  • 8/12/2019 Linear Equation and Matrices

    37/138

    Solution

  • 8/12/2019 Linear Equation and Matrices

    38/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    39/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    40/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    41/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    42/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    43/138

    X=(3,2,1)T

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    44/138

  • 8/12/2019 Linear Equation and Matrices

    45/138

    Solution

  • 8/12/2019 Linear Equation and Matrices

    46/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    47/138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    48/138

    (solve leading variables using back-substitutions)

    (assign nonleading variables as parameter)

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    49/138

  • 8/12/2019 Linear Equation and Matrices

    50/138

    50

  • 8/12/2019 Linear Equation and Matrices

    51/138

    Introduction to Matrix

    A rectangular arrangement of number is called a matrix

    Matrices are usually denoted using upper case letter A,

    B, C, K, P, etc

    example

    A =

    2 0 -4

    3 1 7 B =

    5 2 8

    3 4 3

    3 9 6

  • 8/12/2019 Linear Equation and Matrices

    52/138

    Introduction to Matrix

    The size of matrix is depend on the

    number of rows and columns

    A matrix with mrows and ncolumns is

    called an m-by-nmatrix (m x nmatrix).

    Example:

    A =

    2 0 -4

    3 1 7

    rows

    columns

    2

    3

    2 x 3 matrix

  • 8/12/2019 Linear Equation and Matrices

    53/138

    Introduction to Matrix

    A matrix of size 1 x nis called a row

    matrix:

    A matrix of size mx 1 is called a

    column matrix:

    C = -1 5 2

    B =1

    4

  • 8/12/2019 Linear Equation and Matrices

    54/138

    prepared by Razana Alwee

    54

    A matrix with equal numbers of rows and

    columns is called a square matrix:

    E =7 3

    8 -2C =

    4 12 6

    7 0 4

    11 3 -5

    Introduction to Matrix

  • 8/12/2019 Linear Equation and Matrices

    55/138

    Example

    C =

    2 0

    3 1B =

    5 2 8

    7 4 33 9 6 -4 9

    D =

    6

    2-4

    E =4 -5

    8 1F = 6 2 9

  • 8/12/2019 Linear Equation and Matrices

    56/138

    Introduction to Matrix

    The numbers in the matrix are called its entries

    The entry in the ith rowand jth column of

    matrixXis referred as the (i,j)-entry of thematrixXand denoted by a lower case letter

    with two subscripts indices,xi,j

    If Ais an m x nmatrix. The (i,j)-entry of Ais

    denoted by ai,j

    A =a1,1 a1,2 a1,3 a1,n..a2,1 a2,2 a2,3 a2,n..

    : : : :am,1 am,2am,3 am,n..

  • 8/12/2019 Linear Equation and Matrices

    57/138

    Introduction to Matrix

    Example: Ais an 2 x 3 matrix

    A =

    2 0 -4

    3 1 7

    The (1,2) entry of A is 0; a1,2= 0The (2,3) entry of A is 7;a2,3= 7

    B =

    5 2 8

    7 4 3

    3 9 6

    The (3,1) entry of B is ?;

    b1,3= ?

  • 8/12/2019 Linear Equation and Matrices

    58/138

    Exercise

    What is the (3,4)-entry?

    9006489

    5030323

    344569

    15350

    X=

  • 8/12/2019 Linear Equation and Matrices

    59/138

    Matrices

    The diagonal entries in an mxnmatrix A=[aij] are a11,a22 ,a33and they form the main diagonalof A.

    mnmmm

    n

    n

    ij

    aaaa

    aaaa

    aaaa

    aA

    ..

    :::::

    ..

    ..

    321

    2232221

    1131211

  • 8/12/2019 Linear Equation and Matrices

    60/138

    Matrices

    A diagonal matrix is a square matrix whose

    nondiagonal entries are zero.

    Example: nxnidentity matrixIn

    1000

    0100

    0010

    0001

    nI

  • 8/12/2019 Linear Equation and Matrices

    61/138

    Matrices

    The mxnmatrix whose entries are all zero is called the

    zero matrixand will be denoted by 0.

    0000

    0000

    0000

    0000

  • 8/12/2019 Linear Equation and Matrices

    62/138

    Matrices

    Two matrices A and B are equal (A=B)if they have the

    same number of rows and columns and if corresponding

    entries are equal.

  • 8/12/2019 Linear Equation and Matrices

    63/138

    Example

    Given

    Discuss the possibility that A=B, A=C and B=C

    713

    402A

    13

    02

    B

    dc

    baC

  • 8/12/2019 Linear Equation and Matrices

    64/138

    Example

    A=B(impossible because A and B are different

    size)

    A=C(impossible because A and C are different

    size)

    B=C (possible provided that corresponding

    entries are equal)

    713402A

    13

    02B

    dc

    baC

  • 8/12/2019 Linear Equation and Matrices

    65/138

    Matrix Addition

    If A and B are 2 matrices of the same size,

    A + B is defined to be the matrix of the same size formed

    by adding corresponding entries.

    If A=[aij] and B=[bij],[aij]+[bij]=[aij+bij]

  • 8/12/2019 Linear Equation and Matrices

    66/138

    Matrix Addition

    A =a1,1 a1,2 a1,3a2,1 a2,2 a2,3

    B =b1,1 b1,2 b1,3b2,1 b2,2 b2,3

    A+B=a1,1 a1,2 a1,3a2,1 a2,2 a2,3

    b1,1+b2,1+

    b1,2+

    b2,2+

    b1,3+b2,3+

  • 8/12/2019 Linear Equation and Matrices

    67/138

    Matrix Subtraction

    A-B is defined by subtracting corresponding entries.

    If A=[aij] and B=[bij],

    [aij]-[bij]=[aij- bij]

  • 8/12/2019 Linear Equation and Matrices

    68/138

    Matrix Subtraction

    A =a1,1 a1,2 a1,3a2,1 a2,2 a2,3

    B =b1,1 b1,2 b1,3b2,1 b2,2 b2,3

    A-B=a1,1 a1,2 a1,3a2,1 a2,2 a2,3

    b1,1-b2,1-

    b1,2-

    b2,2-

    b1,3-b2,3-

  • 8/12/2019 Linear Equation and Matrices

    69/138

    Example

    415

    023A

    357

    241B

    1412

    262

    34)5(175

    2042)1(3BA

    762

    224

    34)5(175

    2042)1(3BA

  • 8/12/2019 Linear Equation and Matrices

    70/138

    Theorem

    If A, B and C denote arbitrary mxn

    matrices, then,

    A+B=B+A (commutative law)A+(B+C)=(A+B)+C (associative law)

    0+A=A (0 is the mxn zero matrix)

    A+(-A)= 0

  • 8/12/2019 Linear Equation and Matrices

    71/138

    Scalar Multiplication

    If Ais a matrix and cis a number, the scalar product

    cAis the matrix formed from Aby multiplying each entry

    of Aby the number c.

    If A=[aij] ; cA=c[aij] a1,1 a1,2 a1,3A = a2,1 a2,2 a2,3

    cA =ca1,1ca1,2ca1,3ca2,1ca2,2ca2,3

    cA =a1,1 a1,2 a1,3a2,1 a2,2 a2,3

    c

  • 8/12/2019 Linear Equation and Matrices

    72/138

    Example

    415

    023A

    357

    241B

    8210046

    41502322A

    171711

    689

    8210

    046

    91521

    612323 AB

    91521

    6123

    357

    24133B

  • 8/12/2019 Linear Equation and Matrices

    73/138

    Theorem

    Let Aand Bdenote matrices and let c

    and ddenote numbers,

    c(A+B)=cA+cB(c+d)A=cA+dA

    c(dA)=(cd)A

  • 8/12/2019 Linear Equation and Matrices

    74/138

    Theorem

    If cA=0, then either c=0 or

    A=0

    c(0)=0

    0A=0

  • 8/12/2019 Linear Equation and Matrices

    75/138

    Matrix Multiplication

    If Ais an mxnmatrix and Bis an nxpmatrix

    The number of columns of the left matrix (n)

    must be same as the number of rows of the right

    matrix (n)

    Their matrix product (AB) is the mxpmatrix

    whose (i,j) entry is the dot product of row iof A

    and columnjof B.

  • 8/12/2019 Linear Equation and Matrices

    76/138

    Matrix Multiplication

    Matrix of size 2x3Matrix of size 3x2

    zyx

    yx

    z

    y

    x

    45

    23

    415

    023

    Matrix of size 2x3 Matrix of size 3x1 Matrix of size 2x1

    cba

    ba

    zyx

    yx

    c

    b

    a

    z

    y

    x

    45

    23

    45

    23

    415

    023

    Matrix of size 2x2

  • 8/12/2019 Linear Equation and Matrices

    77/138

    Transposition

    Given an mxn matrix A, the transposeof

    Ais the nxmmatrix, denoted by AT, whose

    columns are formed from the

    corresponding rows of A.

  • 8/12/2019 Linear Equation and Matrices

    78/138

    Example

    415

    023A

    40

    12

    53TA

    zy

    xwB

    zx

    ywBT

    3

    2

    1

    TC

    321C

    Row

    Column

  • 8/12/2019 Linear Equation and Matrices

    79/138

    Theorem

    Let Aand Bdenote matrices whose

    sizes are appropriate for the following

    sums and products.(AT)T=A

    (A+B) T=AT+BT

    For any scalar r, (rA)T=rAT

    (AB)T=BTAT

  • 8/12/2019 Linear Equation and Matrices

    80/138

    Exercise

    315

    012A

    8117

    204B

    31

    40

    12

    C

    (a) A + B (b) 3A-B (c) AC (d) A-2B

    (e) AT+C (f) CB (g) AT+BT (h) CT-B

    (i) AAT (j) ATA (k) ATB (l) CT-A

  • 8/12/2019 Linear Equation and Matrices

    81/138

    Determinants

    The determinant of a 2x2 matrix

    For 1x1 matrix A=[a], |A|=a

    bcaddcbaAA

    det

    dc

    baA

  • 8/12/2019 Linear Equation and Matrices

    82/138

    Example

    Compute the determinant of

    45

    12A

    3585*14*245

    12detdet

    A

  • 8/12/2019 Linear Equation and Matrices

    83/138

    Submatrix

    For any square matrix A, let Aijdenote the submatrix

    formed by deleting the i-th row and j-th column of A.

    Example:

    987654

    321

    A

    97

    64

    12A

    C f

  • 8/12/2019 Linear Equation and Matrices

    84/138

    Cofactors

    Given A=[aij]

    The(i,j)-cofactor of Ais Ci,jgiven by

    ij

    ji

    ij AC det)1(

    The + or sign in the

    (i,j)-cofactor dependson the position of aijinthe matrix.

    (-1)1+1

  • 8/12/2019 Linear Equation and Matrices

    85/138

    Determinants of n 2

    nn CaCaCaA 1112121111 ...det

    D i f 2

  • 8/12/2019 Linear Equation and Matrices

    86/138

    Determinants of n 2

    For n2, the determinant of an nn

    matrixA=[aij] is the sum of n terms of the

    form a1jdet A1j, with plus and minussigns alternating, where the entries a11,

    a12, ,a1nare from the first row of A.

    AaAaAaA nn det)1(..detdet 1

    112121111

    D t i t

  • 8/12/2019 Linear Equation and Matrices

    87/138

    Determinants

    The determinant of an nn matrix A can

    be computed by a cofactor expansion

    across any row or down any column.

    D t i t

  • 8/12/2019 Linear Equation and Matrices

    88/138

    Determinants

    The expansion across the i-th row using the cofactor

    The cofactor expansion down the j-th column is

    ininiiii CaCaCaA ...det 2211

    njnjjjjj CaCaCaA ...det 2211

    D t i t

  • 8/12/2019 Linear Equation and Matrices

    89/138

    Determinants

    The determinant of a 3x3 matrix using first row

    expansion:

    333231

    232221

    131211

    aaa

    aaa

    aaa

    A

    3231

    2221

    13

    3331

    2321

    12

    3332

    2322

    11 detdetdetdet

    aa

    aaa

    aa

    aaa

    aa

    aaaA

    E l

  • 8/12/2019 Linear Equation and Matrices

    90/138

    Example

    Use a cofactor expansion across the 3rd row to compute

    det A.

    l

  • 8/12/2019 Linear Equation and Matrices

    91/138

    example

    E i

  • 8/12/2019 Linear Equation and Matrices

    92/138

    Exercise

    M t i I

  • 8/12/2019 Linear Equation and Matrices

    93/138

    Matrix Inverses

    If Ais a square matrix, a matrix Cis

    called an inverse of Aif,

    AC= I and CA=IC=A-1

    M t i I

  • 8/12/2019 Linear Equation and Matrices

    94/138

    Matrix Inverses

    E l

  • 8/12/2019 Linear Equation and Matrices

    95/138

    Example

    Matri In erses (3 3)

  • 8/12/2019 Linear Equation and Matrices

    96/138

    Matrix Inverses (3 x 3)

    Using cofactor matrix to compute the inverse:

    TAA

    AA

    A )trixcofactorma(||

    1)adjoint(||

    11

    E l

  • 8/12/2019 Linear Equation and Matrices

    97/138

    Example

    Det (A) =|A| =

    A=Find the inverse of the matrix

    Solution:

    1. Find the determinant of A (in this case, using Row 1)

    Example(cont )

  • 8/12/2019 Linear Equation and Matrices

    98/138

    Example(cont.)

    A12

    A13=

    A11= (-1+2) =1

    A21=

    A22=

    A23=

    A31=

    A32=

    A33=

    2. Find the determinant of

    submatrix (minor of entry ai j):

    Example(cont )

  • 8/12/2019 Linear Equation and Matrices

    99/138

    Example(cont.)

    3. Find the adjoint of matrix A:

    TAA )trixcofactorma(Adjoint

    3. Find the cofactors of matrix A:

    141

    183

    121

    cofactorsofmatrix

    141

    183

    121

    111

    482

    131

    Example(cont )

  • 8/12/2019 Linear Equation and Matrices

    100/138

    100

    A-1 =

    4. Calculate the inverse:

    Example(cont.)

    )adjoint(||

    11A

    A

    A

    Matrix Inverses using Linear System

  • 8/12/2019 Linear Equation and Matrices

    101/138

    Matrix Inverses using Linear System

    Suppose Ais a square matrix and there exists a

    sequence of elementary row operations that

    carry AI. Then Ais invertible and this same

    sequence carries IA-1.

    [ A I] [ I A-1]

    where the row operations on A and Iare carried out

    simultaneously.

    Example

  • 8/12/2019 Linear Equation and Matrices

    102/138

    Example

    Solution:

    Solution (cont )

  • 8/12/2019 Linear Equation and Matrices

    103/138

    Solution (cont.)

    Solution (cont )

  • 8/12/2019 Linear Equation and Matrices

    104/138

    Solution (cont.)

    Solution (cont )

  • 8/12/2019 Linear Equation and Matrices

    105/138

    Solution (cont.)

    Solution (cont )

  • 8/12/2019 Linear Equation and Matrices

    106/138

    Solution (cont.)

    Solution (cont )

  • 8/12/2019 Linear Equation and Matrices

    107/138

    Solution (cont.)

    Exercise

  • 8/12/2019 Linear Equation and Matrices

    108/138

    Exercise

    Find the inverse of the given matrices.

    042

    361

    123

    A

    i) Using the Adjoint

    i) Using the linear systems.

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    109/138

    Matrix Factorization

    The solution of a system of linear equations AX = B

    can be computed much more quickly if the matrix A

    can be factored in the form

    A = LU

    where

    L is a lower triangular matrix

    Uis an upper triangular matrix

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    110/138

    Matrix Factorization

    a a a

    a a a

    a a a

    x

    x

    x

    b

    b

    b

    11 12 13

    21 22 23

    31 32 33

    1

    2

    3

    1

    2

    3

    a a a

    a a a

    a a a

    l

    l l

    l l l

    u u u

    u u

    u

    11 12 13

    21 22 23

    31 32 33

    11

    21 22

    31 32 33

    11 12 13

    22 23

    33

    0 0

    0 0

    0 0

    (Ax=B)

    (A=LU)

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    111/138

    Matrix Factorization

    l u l u l u

    l u l u l u l u l u

    l u l u l u l u l u l u

    a a a

    a a a

    a a a

    11 11 11 12 11 13

    21 11 21 12 22 22 21 13 22 23

    31 11 31 12 32 22 31 13 32 23 33 33

    11 12 13

    21 22 23

    31 32 33

    l

    l l

    l l l

    u u u

    u u

    u

    a a a

    a a a

    a a a

    11

    21 22

    31 32 33

    11 12 13

    22 23

    33

    11 12 13

    21 22 23

    31 32 33

    0 0

    0 0

    0 0

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    112/138

    Matrix Factorization

    AX=Bcan be solved in 2 stages:

    First solve LY=Bfor Yby forward substitution.

    Then solve UX=YforXby back substitution.

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    113/138

    Matrix Factorization

    LY=B

    Forward substitution

    33

    2321313

    3

    22

    1212

    2

    11

    1

    1

    ,

    ,

    l

    ylylby

    l

    ylby

    l

    by

    l

    l l

    l l l

    y

    y

    y

    b

    b

    b

    11

    21 22

    31 32 33

    1

    2

    3

    1

    2

    3

    0 0

    0

    Matrix Factorization

  • 8/12/2019 Linear Equation and Matrices

    114/138

    Matrix Factorization

    UX=Y

    Back substitution

    u u u

    u u

    u

    x

    x

    x

    y

    y

    y

    11 12 13

    22 23

    33

    1

    2

    3

    1

    2

    3

    0

    0 0

    11

    31321211

    22

    32322

    33

    33

    ,

    ,

    u

    xuxuyx

    u

    xuyx

    u

    yx

    Doolittle Factorization

  • 8/12/2019 Linear Equation and Matrices

    115/138

    Doolittle Factorization

    The diagonal elements of matrix Lare 1s.

    nn

    n

    n

    nnnnnn

    n

    n

    u

    uuuuu

    ll

    l

    aaa

    aaaaaa

    ULA

    ..00

    :..::

    ..0

    ..

    1..

    :..::

    0..10..01

    ..

    :..::

    ..

    ..222

    11211

    21

    21

    21

    22221

    11211

    Doolittle Factorization

  • 8/12/2019 Linear Equation and Matrices

    116/138

    Doolittle Factorization

    nnnn

    n

    n

    nn

    n

    n

    nn aaa

    aaa

    aaa

    u

    uu

    uuu

    ll

    l

    ..

    :..::

    ..

    ..

    ..00

    :..::

    ..0

    ..

    1..

    :..::

    0..1

    0..01

    21

    22221

    11211

    222

    11211

    21

    21

    Example

  • 8/12/2019 Linear Equation and Matrices

    117/138

    Example

    Find the LUfactorization of the matrix

    using Doolittle form and use it to solve the

    linear system.

    14

    11

    8

    241

    113

    121

    3

    2

    1

    x

    x

    x

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    118/138

    Solution (cont.)

    241

    113

    121

    00

    0

    1

    01

    001

    33

    2322

    131211

    3231

    21

    u

    uu

    uuu

    ll

    l

    111u 212 u 113 u

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    119/138

    Solution (cont.)

    241

    113

    121

    00

    0

    121

    1

    01

    001

    33

    2322

    3231

    21

    u

    uu

    ll

    l

    313

    21 l 11131 l

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    120/138

    ( )

    241

    113

    121

    00

    0

    121

    11

    013

    001

    33

    2322

    32 u

    uu

    l

    5)2)(3(122 u 2)1)(3(123 u

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    121/138

    ( )

    241

    113

    121

    00

    250

    121

    11

    013

    001

    3332 ul

    5

    2

    5

    )2)(1(432

    l

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    122/138

    ( )

    241

    113

    121

    00

    250

    121

    11

    013

    001

    3352 u

    51)2(

    52)1)(1(233

    u

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    123/138

    ( )

    241113

    121

    00250

    121

    11013

    001

    51

    52

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    124/138

    ( )

    14

    11

    8

    11

    013

    001

    3

    2

    1

    52 y

    y

    y81y

    13)8)(3(112 y

    54

    52

    3 )13)(()8)(1(14 y

    TY 54

    138

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    125/138

    ( )

    54

    3

    2

    1

    51

    13

    8

    00

    250

    121

    x

    x

    x 451

    54

    3 x

    15

    )4)(2(132 x

    21

    )4)(1()1)(2(8

    1

    x TX 412

    Exercise

  • 8/12/2019 Linear Equation and Matrices

    126/138

    Find the LUfactorization of the matrixAusing Doolittle

    form and use it to solve the linear systemAX=B.

    (a) B=[7 2 10]T (b) B=[23 35 7]T

    321

    921

    611

    A

    Crout Factorization

  • 8/12/2019 Linear Equation and Matrices

    127/138

    The diagonal elements of matrix Uare 1s.

    ll l

    l l l

    u uu

    a a aa a a

    a a a

    11

    21 22

    31 32 33

    12 13

    23

    11 12 13

    21 22 23

    31 32 33

    0 00

    10 1

    0 0 1

    Example

  • 8/12/2019 Linear Equation and Matrices

    128/138

    Find the LUfactorization of the matrix using Crout form

    and use it to solve the linear system.

    26

    20

    12

    611

    352

    327

    3

    2

    1

    x

    x

    x

    Solution

  • 8/12/2019 Linear Equation and Matrices

    129/138

    333231

    2221

    11

    0

    00

    lll

    ll

    l

    L

    100

    10

    1

    23

    1312

    u

    uu

    U

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    130/138

    611

    352327

    100

    101

    000

    23

    1312

    333231

    2221

    11

    uuu

    lll

    lll

    LU=A

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    131/138

    711 l 221 l 131 l

    611

    352

    327

    100

    10

    1

    0

    00

    23

    1312

    333231

    2221

    11

    u

    uu

    lll

    ll

    l

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    132/138

    7

    212u 7

    313

    u

    611

    352

    327

    100

    10

    1

    1

    02

    007

    23

    1312

    3332

    22 u

    uu

    ll

    l

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    133/138

    7

    31

    7

    22522 l

    31

    15

    27

    33

    7

    31

    23

    23

    u

    u

    611

    352

    327

    100

    10

    7/37/21

    1

    02

    007

    23

    3332

    22 u

    ll

    l

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    134/138

    7

    9

    7

    2

    132

    l 31

    192

    31

    )15(

    7

    )9(

    7

    3

    633

    l

    611

    352

    327

    100

    31/1510

    7/37/21

    1

    07/312

    007

    3332 ll

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    135/138

    611

    352

    327

    100311510

    73721

    31192791

    07312

    007

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    136/138

    26

    20

    12

    31192791

    07312

    007

    3

    2

    1

    y

    y

    y

    192

    902

    ,31

    116

    ,7

    12

    3

    2

    1

    y

    y

    y

    Solution (cont.)

  • 8/12/2019 Linear Equation and Matrices

    137/138

    192902

    31116712

    100

    311510737/21

    3

    2

    1

    x

    xx

    192

    138

    192

    902

    7

    3

    192

    282

    7

    2

    7

    12

    192

    282

    192

    902

    31

    15

    31

    116

    192902

    1

    2

    3

    x

    x

    x

    Exercise

  • 8/12/2019 Linear Equation and Matrices

    138/138

    Find the LUfactorization of the matrixAusing Crout

    form and use it to solve the linear systemAX=B.

    (a) B=[-4 10 5]T (b) B=[20 49 32]T

    231

    351

    642

    A