Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... •...

27
Eric Torrence 1/27 May 2002 Linear Collider Beam Instrumentation Overview Linear Collider R&D Opportunities Workshop May 31 st , 2002 SLAC Eric Torrence* University of Oregon *with M.Woods and D.Cinabro BI Overview Beam Energy Polarization Luminosity http://physics.uoregon.edu/~torrence/talks/

Transcript of Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... •...

Page 1: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 1/27 May 2002

Linear Collider Beam Instrumentation Overview

Linear Collider R&D Opportunities Workshop

May 31

st

, 2002SLAC

Eric Torrence*University of Oregon

*with M.Woods and D.Cinabro

• BI Overview

• Beam Energy

• Polarization

• Luminosity

http://physics.uoregon.edu/~torrence/talks/

Page 2: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 2/27 May 2002

Beam Instrumentation Topics

• Beam Energy Scale and Width• Beam Polarization• Integrated Luminosity and Spectrum

Instrumentation needed for physics...

State of Affairs

• Many conceptual ideas• Few concrete designs or detailed studies• First meeting of new study June 26

th

http://www.slac.stanford.edu/~torrence/ipbi/

Significant Overlap

• Detector/Physics groups• Beam delivery/Final focus activities• Accelerator instrumentation

BI Overview

Page 3: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 3/27 May 2002

Production Threshold

Kinematic Fits

Common Scale Uncertainty

0

5

10

15

20

160 170 180 190 200 210Ecm [GeV]

σWW

[pb]

LEP Preliminary

RacoonWW / YFSWW 1.16

RacoonWWYFSWW 1.16

16

17

18

2C Kinematic Fit

Hadronic Mass

Invariant Mass (GeV)

WW � qqlν

0

500

1000

1500

2000

2500

3000

3500

40 50 60 70 80 90 100

δMW

MW-------------

δEBeam

EBeam------------------≈

Beam Energy at LEP II

Page 4: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 4/27 May 2002

Hadronic Final States

Leptonic Final States

Combined

Still statistics limited...

ALR1

Pe------

NL NR–

NL NR+----------------------=

0

100

200

300

400

500

600

SLDe- Le- R

Z0→µ+µ- 97-98

even

ts

cosθ-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

θWeff2

sin 0.23098 0.00026±=

Polarization at SLC

Page 5: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 5/27 May 2002

Beam Energy Scale

• m

t

from threshold• m

H

from direct reconstruction• m

new

from either

~ 100-200 ppm

Polarization

• SM asymmetries ( , ...)• Background suppression of • SUSY quantum numbers

~ 0.25 - 0.5%

Luminosity Spectrum

• m

t

from threshold• most every physics result! (at some level)

Know ~ 1%

Very challenging in LC environment!

tt

δEb Eb⁄

l+l− qq WW,,WW

δP P⁄

tt

dL dE⁄

Linear Collider Requirements

Page 6: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 6/27 May 2002

Weak Mixing Angle

where

WW Threshold

~ 6 MeV

< 5 MeV

Also Needed

• Low beamstrahlung (separate IP)• Positron polarization• Theory improvements

Very challenging for BI!

SLD 0.00026 25 MeV 0.50%

e

-

only 0.00005 ~ 5 MeV 0.25%

Blondel 0.00002 ~ 2 MeV 0.25% 0.10%

∆ θ2sin W

eff ∆Ebeam ∆P− P−⁄ ∆Peff Peff⁄

ALR1

Peff-----------

NL NR–

NL NR+----------------------= Peff

P− P++1 P−P++--------------------=

∆mW ∆Eb

GigaZ Requirements

Page 7: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 7/27 May 2002

Measurement time scales

• Luminosity averaged - months• Operator tuning - minutes• Train-to-train - 10 ms• Bunch-to-bunch - 1 ns

Correlations between L, E, P need to be understood

Measurement Location

• At IP (luminosity weighted) • Near IP in final focus (upstream/downstream)• Elsewhere in machine

Measurement Frequency

• Every pulse - in collision • Sampled (dropouts?) • Dedicated runs

➾ How much time needed for calibration?

Must compare physics needs to operational needs...

General Issues

Page 8: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 8/27 May 2002

Linear ColliderBeam Energy Measurements(E. Torrence)

Page 9: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 9/27 May 2002

Energy needs

• 100-200 ppm absolute energy scale• pulse-by-pulse relative measurement?• Detailed width measurement also

Can calibrate at Z-pole ~ yearly?

Potential beam methods

• WISRD-style spectrometer• LEP-style BPM spectrometer• Møller/Bhabha scattering target• ‘Wire’ scanner at high dispersion• Your good idea???

Potential detector methods

• Radiative return ( ) kinematics• Mu-pair momenta?

µ+µ−γ

Energy Overview

Page 10: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 10/27 May 2002

T m m cm at 50 GeV

Systematic Errors per Beam

: 100 ppm

Alignment: 190 ppmDetector - IP: 135 ppmTotal: 250 ppm ➾ 12.5 MeV at 50 GeV

➾ 1998 SLC mZ scan implies a ~ MeV offset in ECM

NLC Questions

• Stronger bend (and where)?• Better detector technology• Possible downstream (in collision)?• Also measure energy shape?

Horizontal Bends forSynchrotron Radiation

SynchrotronLight Monitor

Dump

e+

e-

QuadrupoleDoublet

SpectrometerMagnetVertical

Ebeam κ lx-- B ld∫⋅ ⋅=

B ld∫ 3.05= l 15= x 27=

∆ B ld∫

40 20±

Meet the WISRD

Page 11: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 11/27 May 2002

LEPII Spectrometer

• Relies heavily on frequent calibrations• 1 micron stability for less than 8 hours• Operated within tight dynamic range• Beam position and bend held constant

➾ Very low duty factor for LC operations

RF Spectrometer

• Compact 1m RF BPM triplet blocks• Chicane layout for better alignment control• Magnet system more complicated

➾ 100 nm precision required...(assuming 1 mRad bending)

~1 meter

RF BPMTriplets

BPM Spectrometer

Page 12: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 12/27 May 2002

or

• Use angles only (need IP position)• Use energy and angles (independent of IP position)

LEP II Study [LEP II Yellow Report]

meters mRad angular acceptance

% resolution

in 30 minutes (~600 Hz)

(dominated by Fermi motion)

➾ Complete study for LC needed...

L

Hydrogen Gas Jet (GJT)

Recoil Proton Tracker

Silicon Microstrip Detector (SMD)

Electromagnetic Calorimeter (ECAL)

LEP beam

Scattered electronθ

θ

1

2

E 1

E 2

Ebeam

8me

θ1tan θ2tan+( )2----------------------------------------- 1

1 κ2–-------------- me–=

κθ1tan θ2tan–

θ1tan θ2tan+----------------------------------= κ

E1 E2–

E1 E2+-------------------=

l 30=θ 2 6–=σE E⁄ 3.37 E⁄ GeV( )1 4/=

∆Estat 2MeV=

∆Esyst 2MeV∼

Møller Scattering

Page 13: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 13/27 May 2002

Statistics

Channel ∆Ebeam

~ 18 MeV

~ 40 MeV

~ 70 MeV

LEP Potential

Statistics Only

2.7 fb-1

Systematics

• Theoretical Description• Hadronization Uncertainties• Detector Understanding

Need absolute measurement!

γf

f

θ1

θ2e+e- � f f γ

s's---

θ1 θ2sin+sin θ1 θ2+( )sin–

θ1 θ2sin+sin θ1 θ2+( )sin+-------------------------------------------------------------------------=

minv [GeV]

Num

ber

of E

vent

s / 1

GeV

L3Data qqM.C. reweightedM.C. background

MZ = 91.172± 0.098 GeV

0

100

200

300

70 80 90 100 110

183 GeV Dataqqγµµγeeγ

Opal Estimates∆Ebeam ~ 70 MeV∆Ebeam ~ 20 MeV∆Ebeam ~ 80 MeV

qqγµµγeeγθ

Radiative Returns at LEP

Page 14: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 14/27 May 2002

Symmetric production: ,

Need precision and accuracy at small

% per event ( limit)

Collision Energy (mRad)

2 mW 0.522 1000

2 mt 0.875 500

500 GeV 0.937 360

1 TeV 0.984 180

Collision Energy (GeV)

cos

Θ

0.5

0.6

0.7

0.8

0.9

1

200 300 400 500 600 800 1000

γ θ1

θ2e+e- � µµγ

s′ mZ2= Θ1 Θ2=

Θcos Θ

Θ

δΘ 0.1≈ ΓZ

Radiative Returns at NLC

Page 15: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 15/27 May 2002

Linear ColliderPolarimetry(M. Woods)

Page 16: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 16/27 May 2002

Polarization Needs

• ~ 0.25 - 0.5%• Each helicity state separately • In vs. out of collision difference?

➾ e+ polarization a big help!

Location and Technology

• Source - Mott scattering• Damping ring - Synchrotron?• DR - IP - Laser Wire?• Interaction point - WW pairs or Blondel (e+)• Post IP - Compton scattering

Other issues

• Significant depolarization during collisions• In-collision measurements desired• Post-IP environment very difficult

δP P⁄

Polarimetry Overview

Page 17: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 17/27 May 2002

Multiple Detectors

• Çerenkov counter - scattered e- asymmetry• Photon counter - integral γ E asymmetry• Quartz fiber calorimeter - transverse γ asym.

Unique systematics help reduce errors

SLD

MirrorBox

Mirror Box(preserves circularpolarization)

FocusingandSteering Lens

AnalyzingBend Magnet

Laser BeamAnalyzer and Dump Compton

Back Scattered e–

532 nmFrequency DoubledYAG Laser

Pockels CellLeft or Right CircularlyPolarized Photons

“Compton IP”

1-937268A1

e–

e+

e–

CerenkovDetector

ProportionalTube Detector

Compton Polarimetry

Page 18: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 18/27 May 2002

45° Al coated Stainless Mirrors

Phototubes (Hamamatsu R1398)

Cherenkov Detector

10-927268A6

Window 0.5 cm Al

250 µm Al walls in radiator region. All reflective surfaces coatedwith 1000 Å pure Alwith 1000 Å pure Al

45° Al coated Stainless Mirrors

Phototubes (Hamamatsu R1398)

250 µm Al walls in radiator region. All reflective surfaces coatedwith 1000 Å pure Al

Electron (Beam Pipe)

Proportional Tube Detector

Preradiator7 mm Pb

Pb ShieldingPb Shielding

Çerenkov Detector

Page 19: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 19/27 May 2002

Improvements

• Better segmentation in Cherenkov counter • Better design to define active volume • Additional e- detectors?

Kinematics at high energy are favorable!

Outstanding Issues

• Extraction line design• Background tolerance• NLC bunch structure/timing

➾ 1-2% depolarization in collision process!

UncertaintySource SLD LC

Analyzing Power 0.40% 0.20%

Detector Linearity 0.20% 0.10%

Laser Polarization 0.10% 0.10%

Electronic Noise 0.20% 0.05%

Total Uncertainty 0.50% 0.25%

IP Corrections 0.15% < 0.05%

δP P⁄ δP P⁄

NLC Polarimetry Goals

Page 20: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 20/27 May 2002

vs. Efinal

K. ThompsonJanuary 2001

SLAC PUB 8716

vs.

Total Outgoing Bunch ➾

Lumi weighted ~ 25% of bunch average

Lumi Weighted ➾

How well can this be determined???

100 200 300 400 5000

20

40

60

Electron energy [GeV]

Dep

olar

izat

ion

[%]

∆P

TotalS-TBMT

0 5 10 15

0 5 10 15

0

1

2

3

0

1

2

3

∆P ∆y σy⁄

∆P

Depolarization Effects

Page 21: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 21/27 May 2002

pb at GeV

[K. Mönig, Snowmass 2001]

% for 500 fb-1 at 350 GeV (9/1 L ratio)

➾ Similar with e- only

Z/γW

W

W

σ 12 7–= s 350 500–=

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

κγ = 1.007κZ = 1.01SM

cos θ

AL

R

√s = 800 GeV

δP P⁄ 0.1<

Direct Polarization

Page 22: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 22/27 May 2002

Linear ColliderLuminosity Issues

(D. Cinabro)

Page 23: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 23/27 May 2002

Luminosity Needs

• Precise knowledge of (~ 1%)• Need to know incoming energy distribution• Want relative lumi monitor pulse-to-pulse?

Beam Instrumentation

• Beamstrahlung monitors • Spot size/bunch length/deflection scans • Pair monitor • Radiative Bhabha • Two photon monitor • ?????

Detector Instrumentation

• Low angle e+e- tagger • Forward tracker (e+e- acolinearity)

dL dE⁄

Luminosity Overview

Page 24: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 24/27 May 2002

Luminosity spectrum highly dynamic!

350 GeV Machine + ISR + Beamstrahlung + 0.3% Linac

300 310 320 330 340 350 360Collision Energy (GeV)

10-4

10-3

10-2

10-1

1

Assuming Gaussian energy spreadPandora

dn dE⁄

E

Beyond ISR

Page 25: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 25/27 May 2002

Simple Model (D. Cinabro June 26th)

Flat tail + Gaussian core

= 40 MeV / 1%

= 100 MeV / 1%

Comparable to other systematics

335 340 345 350 3552*Ebeam (GeV)

0.00

0.25

0.50

0.75

1.00σ(

tt) (

pb)

Γ = 1.42 GeV, β = 1)Bare (Peskin+Strassler, m = 174.0 GeV,

+ISR

+Beamstrahlung

+Linac

R Atail Acore⁄=

dmt dR⁄

dΓt dR⁄

Physics Example tt

Page 26: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 26/27 May 2002

Bhabha rates

• Forward (180-300 mRad) ~ 200 R• Intermediate (300-800 mRad) ~ 100 R• Barrel (> 800 mRad) ~ 8 R

Need rates from forward events, but not too far ...

Tracking Based (silicon)

• Excellent angular resolution %?

• Backgrounds and radiation?

Calorimeter Based (energy balance)

• % at 100 GeV• Need well understood acceptance/uniformity • Need segmentation (backgrounds)

➾ Detailed studies with backgrounds needed

θ0

∆θ

σs

σ∆θEb θ0sin⁄∼

σs

0.1∼

σE E⁄ 1<

Bhabha Acolinearity

Page 27: Linear Collider Beam Instrumentation Overview Collider Beam Instrumentation Overview ... • Detector/Physics groups ... • Detector requirements for radiative returns

Eric Torrence 27/27 May 2002

General Thoughts

• Many conceptual ideas• Need more concrete planning• IPBI meeting June 26th to kick this off

Beam Energy

• Where to put spectrometer device?• Detector requirements for radiative returns• Other clever ideas???

Polarization

• Possible during collisions?• Detailed polarimeter design• Depolarization model

Luminosity

• Very challenging problem• Large overlap with machine side• Impacts detector design• Detailed studies needed now!

BI Wrap-up