Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit...

35
Definitions Limit theorems Application to the CTRW Summary and Outlook References Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh University of Sussex Joint work with Enrico Scalas and Nikolai Leonenko November 8, 2017 Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Transcript of Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit...

Page 1: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Limit Theorems for the FractionalNon-homogeneous Poisson Process

Mailan Trinh

University of Sussex

Joint work with Enrico Scalas and Nikolai Leonenko

November 8, 2017

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 2: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Overview

1 Definitions

2 Limit theorems

3 Application to the CTRW

4 Summary and Outlook

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 3: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Overview

1 Definitions

2 Limit theorems

3 Application to the CTRW

4 Summary and Outlook

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 4: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Types of Poisson processes

homogeneous

inhomogeneous

standard fractional

(i) (Nhλ(t)) (iii) (Nhf

α (t))

(ii) (N(t)) (iv) (Nα(t))

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 5: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

The standard (non-fractional) case

(i) The homogeneous Poisson process (HPP) (Nhλ(t)) with

intensity parameter λ > 0:

pλx (t) := P(Nhλ(t) = x) = e−λt

(λt)x

x!, x = 0, 1, 2, . . .

(ii) The inhomogeneous Poisson process (NHPP) (N(t)) withintensity λ(t) : [0,∞) −→ [0,∞) and rate function

Λ(s, t) =

∫ t

sλ(u)du

For x = 0, 1, 2, . . ., the distibution of the increment is

px(t, v) := PN(t + v)− N(v) = x =e−Λ(v ,t+v)Λ(v , t + v)x

x!.

Note that N(t) = Nh1 (Λ(t)).

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 6: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

The (inverse) α-stable subordinatorLet Lα = Lα(t), t ≥ 0, be an α-stable subordinator withLaplace transform

E [exp(−sLα(t))] = exp(−tsα), 0 < α < 1, s ≥ 0

and Yα = Yα(t), t ≥ 0, be an inverse α-stable subordinatordefined by

Yα(t) = infu ≥ 0 : Lα(u) > t.

Let hα(t, ·) denote the density of the distribution of Yα(t).Its Laplace transform can be expressed via the Mittag-Lefflerfunction.

E [exp(−sYα(t))] = E 1α,1(−stα), where

E ca,b(z) =

∞∑j=0

(c)jz j

j!Γ(aj + b), with

(c)j = c(c + 1)(c + 2) . . . (c + j − 1), a > 0, b > 0, c > 0, z ∈ C.

Page 7: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

x

0 5 10

hα(1,x

)

0

0.2

0.4

0.6

0.8

1

1.2

x

0 10 20 30

hα(10,x)

0

0.1

0.2

0.3

0.4

0.5

0.6

x

0 50 100

hα(40,x)

0

0.1

0.2

0.3

0.4

0.5

α = 0.1

α = 0.6

α = 0.9

Figure: Plots of the probability densities x 7→ hα(t, x) of the distributionof the inverse α-stable subordinator Yα(t) for different parameterα = 0.1, 0.6, 0.9 indicating the time-evolution: the plot on the left isgenerated for t = 1, the plot in the middle for t = 10 and the plot on theright for t = 40.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 8: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

The fractional case

(iii) The fractional homogeneous Poisson process (FHPP)(Nhf

α (t)) is defined as Nhfα (t) := Nh

λ(Yα(t)) fort ≥ 0, 0 < α < 1. Its marginal distribution is given by

pαx (t) = PNλ(Yα(t)) = x =

∫ ∞0

e−λu(λu)x

x!hα(t, u)du

= (λtα)xE x+1α,αx+1(−λtα), x = 0, 1, 2, . . .

(iv) The fractional non-homogenous Poisson process (FNPP)could be defined in the following way:Recall that the NPP can be expressed via the HPP:

N(t) = Nh1 (Λ(t)).

Analogously define Nα(t) := N(Yα(t)) = Nh1 (Λ(Yα(t)))

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 9: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Overview

1 Definitions

2 Limit theorems

3 Application to the CTRW

4 Summary and Outlook

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 10: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Limit theorems for the Poisson process

Watanabe (1964): The compensator of Nhλ(t) is λt, i.e.

Nhλ(t)− λt is a martingale. (Watanabe characterisation)

One-dimensional central limit theorem

Nhλ(t)− λt√

λt

d−−−→t→∞

N (0, 1)

Functional central limit theorem: convergence in D([0,∞))w.r.t. J1-topology to a standard Brownian motion (B(t))t≥0.(

Nhλ(t)− λt√

λ

)t≥0

J1−−−→λ→∞

B

Functional scaling limit:(Nhλ(ct)

c

)t≥0

J1−−−→c→∞

(λt)t≥0

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 11: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Limit theorems for the Poisson process

Watanabe (1964): The compensator of Nhλ(t) is λt, i.e.

Nhλ(t)− λt is a martingale. (Watanabe characterisation)

One-dimensional central limit theorem

Nhλ(t)− λt√

λt

d−−−→t→∞

N (0, 1)

Functional central limit theorem: convergence in D([0,∞))w.r.t. J1-topology to a standard Brownian motion (B(t))t≥0.(

Nhλ(t)− λt√

λ

)t≥0

J1−−−→λ→∞

B

Functional scaling limit:(Nhλ(ct)

c

)t≥0

J1−−−→c→∞

(λt)t≥0

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 12: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Random time change and continuous mapping theorem

We have convergence in D([0,∞)) w.r.t. J1-topology to astandard Brownian motion (B(t))t≥0.(

Nhλ(t)− λt√

λ

)t≥0

J1−−−→λ→∞

B.

As B has continuous paths and Yα has non-decreasing paths, itfollows that(

Nhλ(Yα(t))− λYα(t)√

λ

)t≥0

J1−−−→λ→∞

[B(Yα(t))]t≥0 .

(Thm. 13.2.2 in Whitt (2002))

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 13: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Limit theorems for the Poisson process

Watanabe (1964): The compensator of Nhλ(t) is λt, i.e.

Nhλ(t)− λt is a martingale. (Watanabe characterisation)

One-dimensional central limit theorem

Nhλ(t)− λt√

λt

d−−−→t→∞

N (0, 1)

Functional central limit theorem: convergence in D([0,∞))w.r.t. J1-topology to a standard Brownian motion (B(t))t≥0.(

Nhλ(t)− λt√

λ

)t≥0

J1−−−→λ→∞

B

Functional scaling limit:(Nhλ(ct)

c

)t≥0

J1−−−→c→∞

(λt)t≥0

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 14: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Cox processes: definitionIdea: Poisson process with stochastic intensity. (Cox (1955))

→ actuarial risk models (e.g. Grandell (1991))

→ credit risk models (e.g. Bielecki and Rutkowski (2002))

→ filtering theory (e.g. Bremaud (1981))

Definition

Let (Ω,F ,P) be a probability space and (N(t))t≥0 be a pointprocess adapted to (FN

t )t≥0. (N(t))t≥0 is a Cox process if thereexist a right-continuous, increasing process (A(t))t≥0 such that,conditional on the filtration (Ft)t≥0, where

Ft := F0 ∨ FNt , F0 = σ(A(t), t ≥ 0),

(N(t))t≥0 is a Poisson process with intensity dA(t).

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 15: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Cox processes and the FNPP

Is the FNPP a Cox process?

As FHPP is also a renewal process: handy criteria in Yannaros(1994), Grandell (1976), Kingman (1964).

Construction of a suitable filtration: Nα(t) = Nh1 (Λ(Yα(t))).

FNαt := σ(Nα(s), s ≤ t)F0 := σ(Yα(t), t ≥ 0)

Ft := FNαt ∨ F0

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 16: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

A central limit theorem

FNαt := σ(Nα(s), s ≤ t)F0 := σ(Yα(t), t ≥ 0)

Ft := FNαt ∨ F0

Proposition

Let (N(Yα(t)))t≥0 be the FNPP adapted to the filtration (Ft)t≥0

as defined in previous slide. Then,

N(Yα(T ))− Λ(Yα(T ))√Λ(Yα(T ))

d−−−−→T→∞

N (0, 1). (1)

Proof: apply Thm. 14.5.I. in Daley and Vere-Jones (2008).

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 17: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

x

-10 0 10 20

ϕ0.1(103,x)

0

0.1

0.2

0.3

0.4

0.5

0.6

x

-5 0 5 10

ϕ0.1(109,x)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

-5 0 5 10

ϕ0.1(101

2,x)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure: The red line shows the probability density function of thestandard normal distribution, the limit distribution according previousproposition. The blue histograms depict samples of size 104 of the righthand side of (1) for different times t = 10, 109, 1012 to illustrateconvergence to the standard normal distribution.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 18: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

x

-5 0 5 10

ϕ0.9(1,x)

0

0.1

0.2

0.3

0.4

0.5

0.6

x

-5 0 5

ϕ0.9(10,x)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

-5 0 5

ϕ0.9(20,x)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure: The red line shows the probability density function of thestandard normal distribution, the limit distribution according to previoustheorem. The blue histograms depict samples of size 104 of the righthand side of (2) for different times t = 1, 10, 20 to illustrate convergenceto the standard normal distribution.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 19: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Limit α→ 1

Proposition

Let (Nα(t))t≥0 be the FNPP. Then, we have the limit

NαJ1−−−→α→1

N in D([0,∞)).

Idea of the proof: According to Theorem VIII.3.36 on p. 479 inJacod and Shiryaev (2003) it suffices to show

Λ(Yα(t))P−−−→

α→1Λ(t), t ∈ R+

By continuous mapping theorem we need to show

Yα(t)d−−−→

α→1t ∀t ∈ R+.

This can be proven by convergence of the respective Laplacetransforms:

Lhα(·, y)(s, y) = Eα(−ysα)α→1−−−→ e−ys = Lδ0(· − y)(s, y).

Page 20: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Limit theorems for the Poisson process

Watanabe (1964): The compensator of Nhλ(t) is λt, i.e.

Nhλ(t)− λt is a martingale. (Watanabe characterisation)

One-dimensional central limit theorem

Nhλ(t)− λt√

λt

d−−−→t→∞

N (0, 1)

Functional central limit theorem: convergence in D([0,∞))w.r.t. J1-topology to a standard Brownian motion (B(t))t≥0.(

Nhλ(t)− λt√

λ

)t≥0

J1−−−→λ→∞

B

Functional scaling limit:(Nhλ(ct)

c

)t≥0

J1−−−→c→∞

(λt)t≥0

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 21: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

A scaling limit (one-dimensional limit)

Assume F0 = ∅,Ω.

Theorem

Let (Nα(t))t≥0 be the FNPP. Suppose the function t 7→ Λ(t) isregularly varying with index β > 0, i.e. for x ∈ [0,∞)

Λ(xt)

Λ(t)−−−→t→∞

xβ.

Then the following limit holds for the FNPP:

Nα(t)

Λ(tα)d−−−→

t→∞(Yα(1))β.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 22: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

A functional scaling limit

Assume F0 = ∅,Ω.

Theorem

Let (Nα(t))t≥0 be the FNPP. Suppose the function t 7→ Λ(t) isregularly varying with index β > 0, i.e. for x ∈ [0,∞)

Λ(xt)

Λ(t)−−−→t→∞

xβ.

Then the following limit holds for the FNPP:(Nα(tτ)

Λ(tα)

)τ≥0

J1−−−→t→∞

(Yα(τ)β

)τ≥0

. (2)

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 23: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Proof

Using Thm. 2 on p. 81 in Grandell (1976), it suffices to show that(Λ(Yα(tτ))

Λ(tα)

)τ≥0

J1−−−→t→∞

(Yα(τ)β

)τ≥0

1 Convergence of finite-dimensional distributions: Byself-similarity of Yα and Levy’s continuity theorem. (Details inthe next slides)

2 Tightness: As τ 7→ Λ(Yα(tτ)) and τ 7→ Yα(τ) arecontinuous and increasing. Thm VI.3.37(a) in Jacod andShiryaev (2003) ensures tightness.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 24: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Proof (II)

Let t > 0 be fixed at first, τ = (τ1, τ2, . . . , τn) ∈ Rn+ and 〈·, ·〉 denote the

scalar product in Rn. Then,

Λ(tαYα(τ))

Λ(tα)=

(Λ(tαYα(τ1))

Λ(tα),

Λ(tαYα(τ2))

Λ(tα), . . . ,

Λ(tαYα(τn))

Λ(tα)

)∈ Rn

+

Its characteristic function is given by

ϕt(u) := E[

exp

(i

⟨u,

Λ(Yα(tτ))

Λ(tα)

⟩)]= E

[exp

(i

⟨u,

Λ(tαYα(τ))

Λ(tα)

⟩)]=

∫Rn

+

exp

(i

⟨u,

Λ(tαx)

Λ(tα)

⟩)hα(τ, x)dx

=

∫Rn

+

[n∏

k=1

exp

(iuk

Λ(tαxk)

Λ(tα)

)]hα(τ1, . . . , τn; x1, . . . , xn)dx1 . . . dxn

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 25: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Proof (III)

We may estimate∣∣∣∣exp

(i

⟨u,

Λ(tαx)

Λ(tα)

⟩)hα(τ, x)

∣∣∣∣ ≤ hα(τ, x).

By dominated convergence

limt→∞

ϕn(u) = limt→∞

∫Rn

+

exp

(i

⟨u,

Λ(tαx)

Λ(tα)

⟩)hα(τ, x)dx

=

∫Rn

+

limt→∞

exp

(i

⟨u,

Λ(tαx)

Λ(tα)

⟩)hα(τ, x)dx

=

∫Rn

+

exp(

i⟨u, xβ

⟩)hα(τ, x)dx = E[exp(i〈u, (Yα(τ))β〉)].

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 26: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

x

0 2 4

φ0.9(10,x)

0

0.2

0.4

0.6

0.8

1

1.2

x

0 2 4

φ0.9(100,x)

0

0.5

1

1.5

x

0 2 4

φ0.9(103,x)

0

0.2

0.4

0.6

0.8

1

1.2

Figure: Red line: probability density function φ of the distribution of therandom variable (Y0.9(1))0.7, the limit distribution according to previousTheorem. The blue histogram is based on 104 samples of the randomvariables on the right hand side of (2) for time points t = 10, 100, 103 toillustrate the convergence result.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 27: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Overview

1 Definitions

2 Limit theorems

3 Application to the CTRW

4 Summary and Outlook

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 28: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Proposition (The fractional compound Poisson process)

Let (Nα(t))t≥0 be the FNPP and suppose the function t 7→ Λ(t) isregularly varying with index β ∈ R. Moreover let X1,X2, . . . bei.i.d. random variables independent of Nα. Assume that the law ofX1 is in the domain of attraction of a stable law, i.e. thereexist sequences (an)n∈N and (bn)n∈N and a stable Levy process(S(t))t≥0 such that for

Sn(t) := an

bntc∑k=1

Xk − bn it holds that SnJ1−−−→

n→∞S .

Then the fractional compound Poisson process

Z (t) := SNα(t) =∑Nα(t)

k=1 Xk fulfills following limit:

(cnZ (nt))t≥0M1−−−→

n→∞

(S(

[Yα(t)]β))

t≥0,

where cn = abΛ(n)c.

Page 29: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

One-dimensional limit

Previous proposition implies for fixed t > 0

cn

Nα(nt)∑k=1

Xkd−−−→

n→∞S((Yα(t))β)

In the one-dimensional case we can do better:

We do not need independence between N(t) and X1,X2, . . .(Anscombe (1952))

Additionally, X1,X2, . . . can be mixing (Mogyorodi (1967),Csorgo and Fischler (1973))

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 30: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Overview

1 Definitions

2 Limit theorems

3 Application to the CTRW

4 Summary and Outlook

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 31: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Summary and Outlook

We gave a reasonable definition of a fractionalnon-homogeneous Poisson process that fits into pre-existingtheory and results. ⇒ Other possible definitions of FNPP:N1(Yα(Λ(t)))

We derived limit theorems for the FNPP ⇒ Parameterestimation

convergence rates

Other related stochastic processes: Skellam processes,integrated processes

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 32: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Thank you for your attention!

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 33: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Anscombe, F. J. (1952). Large-sample theory of sequentialestimation. Proc. Cambridge Philos. Soc. 48, 600–607.

Bielecki, T. R. and M. Rutkowski (2002). Credit risk: modelling,valuation and hedging. Springer Finance. Springer-Verlag, Berlin.

Bremaud, P. (1981). Point processes and queues. Springer-Verlag,New York-Berlin. Martingale dynamics, Springer Series inStatistics.

Cox, D. R. (1955). Some statistical methods connected with seriesof events. J. Roy. Statist. Soc. Ser. B. 17, 129–157; discussion,157–164.

Csorgo, M. and R. Fischler (1973). Some examples and results inthe theory of mixing and random-sum central limit theorems.Period. Math. Hungar. 3, 41–57. Collection of articles dedicatedto the memory of Alfred Renyi, II.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 34: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Daley, D. J. and D. Vere-Jones (2008). An introduction to thetheory of point processes. Vol. II (Second ed.). Probability andits Applications (New York). Springer, New York. General theoryand structure.

Grandell, J. (1976). Doubly stochastic Poisson processes. LectureNotes in Mathematics, Vol. 529. Springer-Verlag, Berlin-NewYork.

Grandell, J. (1991). Aspects of risk theory. Springer Series inStatistics: Probability and its Applications. Springer-Verlag, NewYork.

Jacod, J. and A. N. Shiryaev (2003). Limit theorems for stochasticprocesses (Second ed.), Volume 288 of Grundlehren derMathematischen Wissenschaften [Fundamental Principles ofMathematical Sciences]. Springer-Verlag, Berlin.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh

Page 35: Limit Theorems for the Fractional Non-homogeneous Poisson ... · De nitionsLimit theoremsApplication to the CTRWSummary and OutlookReferences Overview 1 De nitions 2 Limit theorems

Definitions Limit theorems Application to the CTRW Summary and Outlook References

Kingman, J. (1964). On doubly stochastic poisson processes. InMathematical Proceedings of the Cambridge PhilosophicalSociety, Volume 60, pp. 923–930. Cambridge Univ Press.

Mogyorodi, J. (1967). Limit distributions for sequences of randomvariables with random indices. In Trans. Fourth Prague Conf. onInformation Theory, Statistical Decision Functions. RandomProcesses (Prague, 1965), pp. 463–470. Academia, Prague.

Watanabe, S. (1964). On discontinuous additive functionals andLevy measures of a Markov process. Japan. J. Math. 34, 53–70.

Whitt, W. (2002). Stochastic-process limits. Springer Series inOperations Research. Springer-Verlag, New York. Anintroduction to stochastic-process limits and their application toqueues.

Yannaros, N. (1994). Weibull renewal processes. Ann. Inst. Statist.Math. 46(4), 641–648.

Limit Theorems for the Fractional Non-homogeneous Poisson Process Mailan Trinh