Light Weight Ablator Response Model Development & Challenges

32
1/32 Light Weight Ablator Response Model Development & Challenges N. N. Mansour NASA Ames Research Center Ablator Response model validated from fundamental experiment to flight data Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Transcript of Light Weight Ablator Response Model Development & Challenges

Page 1: Light Weight Ablator Response Model Development & Challenges

1/32

Light Weight Ablator Response Model Development & Challenges

N. N. Mansour NASA Ames Research Center

Ablator Response model validated from fundamental experiment to flight data

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 2: Light Weight Ablator Response Model Development & Challenges

2/32

Needs for Thermal Protection Systems (TPS)

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 3: Light Weight Ablator Response Model Development & Challenges

3/32

TPS Systems

Two type of TPS materials

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 4: Light Weight Ablator Response Model Development & Challenges

4/32

NASA - Space Exploration

Current thinking •  Low Earth Orbits (LEO) – Private providers •  Beyond LEO – Both Private & NASA providers

Ø Ablators will play a major role in NASA’s atmospheric entry missions

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 5: Light Weight Ablator Response Model Development & Challenges

5/32

Widely used class of materials ü  Stardust ü  MSL ü  Dragon ü  AQ61 ü  …

Mars Science Laboratory (MSL) heatshield

Dragon capsule, SpaceX

Phenolic Impregnated Carbon Ablator (PICA)

Carbon-Phenolic class of ablators PICA: member of the family of Lightweight Carbon

Ablators (LCAs) that was developed at NASA Ames Research Center as a lightweight thermal protection system (TPS) material for the Stardust mission

= +

Excellent Performance: [250 W/cm2 to 1100 W/cm2]

carbon Fiberform™ resin

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 6: Light Weight Ablator Response Model Development & Challenges

6/32

Flight data: MEDLI

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Mahzari et al. AIAA 2013-0185

Page 7: Light Weight Ablator Response Model Development & Challenges

7/32

Performance of Current State Of the Art

Mahzari et al. AIAA 2013-0185 Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 8: Light Weight Ablator Response Model Development & Challenges

8/32

Performance of Current State Of the Art

Mahzari et al. AIAA 2013-0185

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 9: Light Weight Ablator Response Model Development & Challenges

9/32

Flight data: MEDLI

Mahzari et al. AIAA 2013-0185 Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 10: Light Weight Ablator Response Model Development & Challenges

10/32

Historical standpoint (1968)

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 11: Light Weight Ablator Response Model Development & Challenges

11/32

. Context Today’s standpoint (2008)

Have  we  reached  the  limita/ons  of  Kendall’s  model  (used  in  current  codes)?  

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 12: Light Weight Ablator Response Model Development & Challenges

12/32 Chart from Rich Young, NASA ARC ⇒  Final shape reconstructed using data from 10 ablation sensors in heatshield Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 13: Light Weight Ablator Response Model Development & Challenges

13/32

Need: understand then build phenomenological models

•  Improve global understanding

•  Determine the important phenomena

•  Derive phenomenological models

•  Validate

•  3D design (gap, holes, etc.)

•  Couple to environment

à  Revisit the physics

à  Analysis of the orders of magnitude

à  Multiscale approach (micro-to-macro)

à  Experiments on laboratory material

à  Development of 3D simulation tool

à  Development of coupling tools (multi-physics)

Methods

Keep the study as general as possible, but the physics changes from one material to another, and from one atmospheric re-entry to another.

Steps

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 14: Light Weight Ablator Response Model Development & Challenges

14/32

Type 1 model

Physics and Chemistry in Ablative Materials

1 - Virgin PICA

SEM micrographs (1)

1

3 - Charred PICA

3

2 - Partially charred 2

4 - Partially ablated

4

Stardust, Jan. 15, 2006

Imag

e cr

edit:

NA

SA

[1] M. Stackpoole et al., Post-Flight Evaluation of Stardust Sample Return Capsule Forebody Heatshield Material, AIAA 2008-1202

(1)

14

Towards “High-Fidelity Model” •  Type 1: Heat transfer, pyrolysis, simplified transport of the pyrolysis gases, equilibrium chemistry, surface ablation (current state-of-the-art) •  Type 2: Type 1 augmented with an averaged momentum equation for the transport of the pyrolysis gases

•  Type 3: High-fidelity model (Type 2 + finite-rate chemistry, multi-component diffusion, in-depth ablation/coking, explicit radiative transfer model, …)

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 15: Light Weight Ablator Response Model Development & Challenges

15/32

Phenomenology

!"#$"%&'()*#"(+&

,-#.+-/"/&0.%*&

12+(3.%&&0.%*&

!"#$$"%"

!"&'$$"%"

!"&#$$"%"

4.5"%$&0.%*&

!"($$$"%"

OH

Phenolic polymer

H2 +

C6H6 + H2O

C6 + 3 H2

3 C2H2

C (s)

2 O

O2

2 C (s) + O2 ! 2 CO

)*+,-./01",+2*34-.,."5.-,67-8+9"-77:./03;<4="

">2344-4?"@7+2/0<4"""A-20<.2<61"5>@A="B"")30C<4"60+D<0,"

>@AB""230C<4E6*+4<7-2"5F-0?-4="G>/32H6<<7+I"'$$JK"

6.7%8(#-&+(-*#&

9.%:;"/<.7/&=.>&

Macroscopic phenomenology Macroscopic illustration Microscopic illustration

"L"M*+4<7-2L9+2<,6<.-;<4"60<9:2/"5(="L""M*+4<7-2L9+2<,6<.-;<4"03/+"5&="

N3.E.:0D32+"O4/+032;<4."-4"6<0<:."8C0<:.",+9-3"5(=B"L"-4L9+6/*"3C73;<4"L "+0<.-<4"L "-4L9+6/*"0+2<,C-43;<4"L "2<:67+9"*+3/"/034.6<0/"59-P:.-<4I"2<4F+2;<4I"039-3;<4="

A3/+0-37EQ<R"2<:67-4?"L ""S<:49301"731+0"/034.D+0."5*+3/"349",3..="L ""T+2<,C-43;<4E23/37-2-/1"L ""UC73;<4"5<V-93;<4I".:C7-,3;<4I".63773;<4="

O4/+0D32+"6*+4<,+43B""W+3/""349",3.."C37342+"5&=I">:C.:0D32+"6*+4<,+43"L ""O4L9+6/*"3C73;<4"5(="L ""M+4+/03;<4"<D"039-3;<4"5(="L ""N3."Q<R"+4/+0-4?"-4/<"/*+",3/+0-37"5(="""L "")<49:2;<4"*+3/"/034.D+0"5&="L ""T39-3;<4"*+3/"/034.D+0"5+,6-0-237B"&I",<9+7+9B"(=""L ""X-4-/+L03/+"2*+,-./01"<D"/*+"610<71.-."?3.+."5(="L "")<H-4?"5(="

L ""A:7;L2<,6<4+4/"9-P:.-<4"5(="L "")<4F+2;F+"/034.6<0/"5Y3021B"'I"%7-4H+4C+0?B"(="L "")*300-4?"60<2+.."5+F<7:;<4"<D"/*+"9+4.-/1B"&I"6<0<.-/1B"'I"/<0/:<.-/1B"(I"6+0,+3C-7-/1B"'I"+P+2;F+"2<49:2;F-/1B"&I"+P+2;F+".:0D32+"30+3B"(="

Z<4?"9-./342+"+P+2/."L"T39-3;<4"

?@&#*<.%/3)73.%&.A&(&&<(#2.%BCD*%.+"<&<.'C./")*&

2<H-4?"

039["

E*()&

?@&/"'7+(3.%&.A&)D*&(2+(3.%&.A&(&&<(#2.%BCD*%.+"<&<.'C./")*&FG(<D(78H&IJKJL&

!"\$$$"%"

&"B"-4"377",3/+0-37L0+.6<4.+",<9+7."5/16+"&="'"B"-4".<,+",3/+0-37L0+.6<4.+",<9+7."5/16+"'="("B"-4"34371.-.",3/+0-37L0+.6<4.+",<9+7."5/16+"(="

A3/+0-37"0+.6<

4.+"5+[?["MU]

^EMUA

="W1

6+0.<4

-2"Q<R

"

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 16: Light Weight Ablator Response Model Development & Challenges

16/32

Building a model for PICA class

(1)  

[1] M. Stackpoole et al., Post-Flight Evaluation of Stardust Sample Return Capsule Forebody Heatshield Material, AIAA 2008-1202

 1.  Pyrolysis  experiments  and  

modeling  (TGA  +  mass  spec/Flash  hea/ng)    

 2.  Abla/on  experiments  and  

modeling  (Side  arm  reactor/etc.)  

   3.  Pyrolysis-­‐abla/on  coupling  

(ICP  tes/ng)    4.  Flow  Env.  Material  Res.  Coupling  

(Flight  data/ICP  tes/ng)  

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 17: Light Weight Ablator Response Model Development & Challenges

17/32

Pyrolysis experiments & modeling

Reactor Condensor

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 18: Light Weight Ablator Response Model Development & Challenges

18/32

Pyrolysis experiments & modeling

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 19: Light Weight Ablator Response Model Development & Challenges

19/32

Pyrolysis experiments & modeling

Detailed model of the pyrolysis

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 20: Light Weight Ablator Response Model Development & Challenges

20/32

PATO validation study

Adding water effects reproduces the observed hump in the MEDLI data Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 21: Light Weight Ablator Response Model Development & Challenges

21/32

Virgin  material  

Pyrolysis  zone  

Abla/on    zone  

≈  400  K  

≈  1200  K  

≈  1400  K  Coking  zone  

≈  3000  K  

OH

Phenolic polymer

H2 +

C6H6 + H2O

C6 + 3 H2

3 C2H2

C (s)

2 O

O2

2 C (s) + O2 2 CO

Boundary  layer  

Non-­‐viscous  flow  

coking  

rad.  

Heat  

≈  6000  K  

Stardust  

TPS  core  

Macro  illustra?on  

[Lachaud  et  al.,  JSR,  47  (2010),  910-­‐921]

[Stackpoole  et  al.,  AIAA  2008-­‐1202]  

Micro-­‐scale  simula?on  of  carbon/phenolic  

abla?on  

Spallation

High-fidelity modeling

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 22: Light Weight Ablator Response Model Development & Challenges

22/32

HYMETS testing for spallation

Dual-­‐exposure  camera  s/ll  frames  during  FiberForm  tes/ng  in  the  HYMETS  arcjet.  Images  are  combined  from  several  frames  (Credit:  Jennifer  Inman  and  Steve  Jones).      

Term in FIAT is added to the Bc’ to account for spallation

Both Fiberform and PICA have been tested

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 23: Light Weight Ablator Response Model Development & Challenges

23/32

!"#"$%&'()*+%,*"-./%0*/)"-

12+%,-3,%)-$ !(%,.("43)-$

Tomography

X-ray Rotation stage

Camera

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 24: Light Weight Ablator Response Model Development & Challenges

24/32

Tomography

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 25: Light Weight Ablator Response Model Development & Challenges

25/32

Porous Media Analysis (PuMA) tool

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 26: Light Weight Ablator Response Model Development & Challenges

26/32

Exact solution for an oxidizing fiber

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 27: Light Weight Ablator Response Model Development & Challenges

27/32

PuMA verification

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 28: Light Weight Ablator Response Model Development & Challenges

28/32

Comparison to analytical solution

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 29: Light Weight Ablator Response Model Development & Challenges

29/32

PuMA

Nov. 17, 2014 Inauguration of the École Centrale Plasma Torch

Page 30: Light Weight Ablator Response Model Development & Challenges

30/32

DPLR/Ablator Response Model coupling

DPLR and Material response model: –  Communication between the two codes –  Parallelization strategy

Hunter negotiates between: •  DPLR •  Material response •  Grid generation

Hunter/LibMesh

CFD ARM

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Time dependent energy soak into a simplified capsule structure for the MPCV.

Page 31: Light Weight Ablator Response Model Development & Challenges

31/32

Summary

•  Material performance tests (ICP, ArcJets, Flight data, etc.) as well as basic laboratory testing campaigns are needed to advance material response models to match advancements in our ability to model the flow physics (i.e. the environment).

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014

Page 32: Light Weight Ablator Response Model Development & Challenges

32/32

Team + Collaborators

•  J. Lachaud •  F. Panerai •  A. Martin •  T. Magin •  I. Cozmuta •  J. Scoggins •  J-M. Bouilly •  S. Sepka •  D. Parkinson •  A. MacDowell •  A. Haboub •  H-W. Wong •  J. Peck •  R. Jaffe

•  Y. Dubief •  R. Cocker •  A. Amar •  G. Palmer •  Y-K. Chen •  M. Barnhardt •  S. Muppidi •  B. Kirk •  C. Henze •  A. Omidy •  J. Ferguson •  A. Wray

Inauguration of the École Centrale Plasma Torch Nov. 17, 2014