Light-cone PDFs from lattice...

23
Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 1 / 23 Light-cone PDFs from lattice QCD Krzysztof Cichy Adam Mickiewicz University, Poznań, Poland in collaboration with: Constantia Alexandrou (Univ. of Cyprus, Cyprus Institute) Martha Constantinou (Temple University, Philadelphia) Kyriakos Hadjiyiannakou (Cyprus Institute) Karl Jansen (DESY Zeuthen) Aurora Scapellato (Univ. of Cyprus, Univ. of Wuppertal) Fernanda Steffens (Univ. of Bonn) This project is supported by the National Science Center of Poland SONATA BIS grant No 2016/22/E/ST2/00013 (2017-2022). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 642069

Transcript of Light-cone PDFs from lattice...

Page 1: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 1 / 23

Light-cone PDFs from lattice QCD

Krzysztof CichyAdam Mickiewicz University, Poznań, Poland

in collaboration with:

Constantia Alexandrou (Univ. of Cyprus, Cyprus Institute)Martha Constantinou (Temple University, Philadelphia)

Kyriakos Hadjiyiannakou (Cyprus Institute)Karl Jansen (DESY Zeuthen)

Aurora Scapellato (Univ. of Cyprus, Univ. of Wuppertal)Fernanda Steffens (Univ. of Bonn)

This project is supported by the National Science Center of PolandSONATA BIS grant No 2016/22/E/ST2/00013 (2017-2022).

This project has received funding from the European Union’s Horizon 2020 research andinnovation programme under the Marie Sklodowska-Curie grant agreement No 642069

Page 2: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Outline of the talk

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 2 / 23

1. PDFs and quasi-PDFs

2. Procedure

3. Renormalization

4. Matching

5. Systematic effects

• excited states

Continued in next talk

by Aurora Scapellato

Based on:

• C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,A. Scapellato, F. Steffens, “Transversity parton distribu-tion functions from lattice QCD ”, arXiv: 1807.00232 [hep-lat]

• C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,A. Scapellato, F. Steffens, “Reconstruction of light-coneparton distribution functions from lattice QCD simulationsat the physical point”, arXiv: 1803.02685 [hep-lat]

• C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-nakou, K. Jansen, H. Panagopoulos, F. Steffens, “Acomplete non-perturbative renormalization prescription forquasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (FrontierArticle)

• M. Constantinou, H. Panagopoulos, “Perturbative Renor-malization of quasi-PDFs”, Phys. Rev. D96 (2017) 054506

• C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-nakou, K. Jansen, F. Steffens, C. Wiese, “Updated LatticeResults for Parton Distributions”, Phys. Rev. D96 (2017)014513

Page 3: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

PDFs

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 3 / 23

• Hadrons are complicated systems with properties resulting fromthe strong dynamics of quarks and gluons inside them.

• This dynamics is characterized in terms of, among others, partondistribution functions (PDFs).

• PDFs are essential in making predictions for collider experiments.

σAB =∑

a,b=q,g

σab ⊗ fa|A(x1, Q2)⊗ fb|B(x2, Q

2)

x-410 -310 -210 -110 1

)2xf

(x,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

uss,

cc,

2 = 10 GeV2Q

x-410 -310 -210 -110 1

)2xf

(x,Q

0

0.2

0.4

0.6

0.8

1

1.2

x-410 -310 -210 -110 1

)2xf

(x,Q

0

0.2

0.4

0.6

0.8

1

1.2

g/10

d

d

u

u

ss,

cc,

bb,

2 GeV4 = 102Q

x-410 -310 -210 -110 1

)2xf

(x,Q

0

0.2

0.4

0.6

0.8

1

1.2

MSTW 2008 NLO PDFs (68% C.L.)

Source: LHC, CERN MSTW2008, Eur. Phys. J. C63, 189

Page 4: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

PDFs – why is it difficult on the lattice?

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 4 / 23

• PDFs have non-perturbative nature ⇒ LATTICE?

• But: PDFs given in terms of non-local light-cone correlators –intrinsically Minkowskian – problem for the lattice!

q(x) =1

dξ−e−ixp+ξ−〈N |ψ(ξ−)ΓA(ξ−, 0)ψ(0)|N〉,

where: ξ− = ξ0−ξ3√2

and A(ξ−, 0) is the Wilson line from 0 to ξ−.

• This expression is light-cone dominated – needs ξ2 = ~x2 + t2 ∼ 0– very hard due to non-zero lattice spacing!

• Accessible on the lattice – moments of the distributions, but . . .

⋆ higher derivatives noisy,

⋆ operator mixing.

Page 5: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Moments of PDFs on the lattice

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 5 / 23

There is, however, an important lesson to be learned from moments calculations:

0

0.05

0.1

0.15

0.2

0.25

0.3

14 16 18 20 22 24

x

u�

d

tsink❂a

fixed sink method,tsink ✁ 12aABMK

fitopen sink method

ETMC, C. Alexandrou et al. ETMC, S. Dinter et al.Phys. Rev. D93, 039904 (2016) Phys. Lett. B704, 89 (2011)

• source-sink separation Ts has to be atleast 1 fm!

• important to verify excited states con-tamination between different methods

• 2-state fits make sense only if one canget the safe=large Ts with good precision

• else, no comparison to the plateaumethod possible

✶�✶✁

✶�✶✂

✶�✄✁

✶�✄✂

✶�☎✁

✲✆ ✲✝ ✲✄ ✁ ✄ ✝ ✆

❣❆✉

✞✟

t ✥ ✠s✡☛✴☞

❛✁✌✍✶☎✁ ✎✏✎

❊✑✒✓❛✔

✒✕✖✗❂✶✁

✒✕✖✗❂✶✄

✒✕✖✗❂✶✝

PNDME, T. Bhattacharya et al.Phys. Rev. D94, 054508 (2016)

Page 6: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Quasi-PDFs

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 6 / 23

• Quasi-PDF approach:X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

• Compute a quasi distribution q, which is purely spatial and uses nucleons withfinite momentum:

q(x, µ2, P3) =

dz

4πeixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

• z – distance in any spatial direction z,

• P3 – momentum boost in this direction.

• Γ = γ0, γ3 – unpolarized, Γ = γ5γ3 – helicity,Γ = σ31, σ32 – transversity

• Theoretically very appealing and intuitive!

• Differs from light-front PDFs by O

(

Λ2QCD

P 23,m2

N

P 23

)

.

• The highly non-trivial aspect: how to relateq(x, µ2, P3) to the light-front PDF q(x, µ2) (infi-nite momentum frame) =⇒ LaMET

Page 7: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Quasi-PDFs on the lattice

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 7 / 23

Beautiful idea and solid theoretical framework!

BUT: lattice realization far from trivial!

• Signal for the relevant nucleon 2-pt and 3-pt function depends on:

⋆ nucleon momentum P3 – exponentially decaying with P3!⋆ source-sink separation Ts – exponentially decaying with ts!⋆ quark mass – worsens for smaller masses.

• Many systematics to control!

Spectrum becomes denser at larger nucleon momenta=⇒ Careful analysis of excited states contamination required at leastat the largest employed P3.

2-state fits need to be checked against the plateau method with goodprecision of large Ts.

Page 8: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Summary of the procedure

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 8 / 23

The procedure to obtain light-cone PDFs from the latticecomputation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalizationfunctions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme andevolve to µ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q(x, µ2, P3) =

dz

4πeixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.

Page 9: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Renormalization

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 9 / 23

Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergencesthat need to be removed:

• standard logarithmic divergence w.r.t. the regulator, log(aµ),

• power divergence related to the Wilson line; resums into amultiplicative exponential factor, exp (−δm|z|/a+ c|z|)δm – strength of the divergence, operator independent,c – arbitrary scale (fixed by the renormalization prescription).

Proposed renormalization programme described in:C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen,H. Panagopoulos, F. Steffens, “A complete non-perturbative renormalization prescriptionfor quasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (Frontiers Article)

Important insights also from the lattice perturbative paper:M. Constantinou, H. Panagopoulos, “Perturbative Renormalization of quasi-PDFs”, Phys.Rev. D96 (2017) 054506→ mixing of Γ = γ3 and Γ = 1, important guidance to non-pert. renormalization!

Non-perturbative renormalization scheme: RI’-MOM.G. Martinelli et al., Nucl. Phys. B445 (1995) 81

Page 10: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Renormalization

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 10 / 23

RI’-MOM renormalization conditions (for cases without mixing):for the operator:

Z−1q ZO(z)

1

12Tr

[

V(p, z)(

VBorn(p, z))−1

]∣

p2=µ20

= 1 ,

for the quark field:

Zq =1

12Tr

[

(S(p))−1 SBorn(p)]

p2=µ20

.

• momentum p in the vertex function is set to the RI′ renormalization scale µ0

• V(p, z) – amputated vertex function of the operator,

• VBorn – its tree-level value, VBorn(p, z)=iγ3γ5 eipz for helicity,

• S(p) – fermion propagator (SBorn(p) at tree-level).

This prescription handles all divergences that are present and applies the

necessary finite renormalization related to the lattice regularization.

Page 11: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Matching to light-front PDFs (unpolarized, helicity)

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 11 / 23

The matching formula can be expressed as:

q(x, µ) =

∫ ∞

−∞

|ξ|C

(

ξ,µ

xP3

)

q

(

x

ξ, µ, P3

)

C – matching kernel: [C. Alexandrou et al., arXiv:1803.02685 [hep-lat]]

C

(

ξ,ξµ

xP3

)

= δ(1− ξ) +αs

2πCF

[

1 + ξ2

1− ξln

ξ

ξ − 1+ 1 +

3

]

+

ξ > 1,

[

1 + ξ2

1− ξln

x2P 23

ξ2µ2(4ξ(1− ξ))− ξ(1 + ξ)

1− ξ+ 2ι(1− ξ)

]

+

0 < ξ < 1,

[

−1 + ξ2

1− ξln

ξ

ξ − 1− 1 +

3

2(1− ξ)

]

+

ξ < 0,

ι=0 for γ0 and ι=1 for γ3/γ5γ3.

Plus prescription at ξ=1:∫

|ξ|

[

C

(

ξ,ξµ

xP3

)]

+

q

(

x

ξ

)

=

|ξ|C

(

ξ,ξµ

xP3

)

q

(

x

ξ

)

−q (x)

dξ C

(

ξ,µ

xP3

)

.

Page 12: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Matching to light-front PDFs (unpolarized, helicity)

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 12 / 23

Alternative matching: [T. Izubuchi et al., arXiv:1801.03917 [hep-ph]]

C

(

ξ,ξµ

xP3

)

= δ(1− ξ) +αs

2πCF

[

1 + ξ2

1− ξln

ξ

ξ − 1+ 1 +

3

][1,∞]

+(1)

− 3

2ξξ > 1,

[

1 + ξ2

1− ξln

x2P 23

ξ2µ2(4ξ(1− ξ))− ξ(1 + ξ)

1− ξ+ 2ι(1− ξ)

][0,1]

+(1)

0 < ξ < 1

[

−1 + ξ2

1− ξln

ξ

ξ − 1− 1 +

3

2(1− ξ)

][−∞,0]

+(1)

− 3

2(1− ξ)ξ < 0,

+αsCF

2πδ(1− ξ)

(

3

2ln

µ2

4y2P 23

+5

2

)

violates particle number conservation:∫

−∞

dx q(x, µ) 6=∫

−∞

dx q(x, µ, P3) and

−∞

dξ C(ξ, ξµ/xP3) 6= 1,

which increases with growing P3 (around 8% at P3 = 10π/48).

In our procedure, particle number is conserved. This amounts to a modification ofthe MS scheme; modification decreases with growing P3.

Page 13: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Matching to light-front PDFs (transversity)

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 13 / 23

Recently we derived the matching formula for transversity PDFs (MS −→ MS):[C. Alexandrou et al., arXiv:1807.00232 [hep-lat]]

δC

(

ξ,ξµ

xP3

)

= δ(1− ξ) +αs

2πCF

[

1− ξln

ξ

ξ − 1+

2

ξ

]

+

ξ > 1,

[

1− ξ

(

lnx2P 2

3

ξ2µ2(4ξ(1− ξ))

)

− 2ξ

1− ξ

]

+

0 < ξ < 1,

[

− 2ξ

1− ξln

ξ

ξ − 1+

2

1− ξ

]

+

ξ < 0,

Formula for the transverse momentum cutoff scheme derived in: [X. Xiong et al., Phys. Rev. D 90, 014051]

Page 14: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Systematics

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 14 / 23

Different systematic effects still need to be addressed:

• pion mass ✓

• cut-off effects ✓✗

• finite volume effects ✓✗

• contamination by excited states ✓✗

• higher-twist effects ✓✗

• truncation of conversion, evolution and matching ✗

• lattice artifacts in renormalization functions ✓✗

• . . .

Biggest challenge:Reach large momenta at large source-sink separations

Page 15: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Computation setup

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 15 / 23

• fermions: Nf = 2 twisted mass fermions + clover term

• gluons: Iwasaki gauge action, β = 2.1

β=2.10, cSW=1.57751, a=0.0938(3)(2) fm

483 × 96 aµ = 0.0009 mN = 0.932(4) GeV

L = 4.5 fm mπ = 0.1304(4) GeV mπL = 2.98(1)

For each gauge field configuration, we use:

• 6 directions of Wilson line: ±x,±y,±z

• 16 source positions: 1 HP inversion, 16 LP inversions

• Bias from the LP inversions corrected using the CovariantApproximation Averaging technique (CAA)[E. Shintani et al., Phys. Rev. D91, 114511 (2015)]

Page 16: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Momentum smearing

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 16 / 23

Smomψ(x) =1

1 + 6α

ψ(x) + α±3∑

j=±1

Uj(x)eiξjψ(x+ j)

[G. Bali et al., Phys. Rev. D93, 094515 (2016)]

0 2 4 6 8

�✁✂

10 -1

10 0

✄☎

✆✝✞✟✠

☎☎

✡✡☛

✡☛

☞✌

✍✎✏ ✑

✒✓

✔ ✕ ✖

✔ ✕ ✖✗✘✙

✔ ✕ ✖✗✚

✔ ✕ ✖✗✛✙

✔ ✕ ✖✗✜

✔ ✕ ✖✗✢✙

2 4 6 8 10

�✁✂

0

0.5

1

1.5

2

✄☎

✆✝✝

✞✟✠✡☛☞✞ ☛✞☛✌✍✎ ✏✑ ✒ ✓ ✔✕✖✗

✘✙ ✚✙✚✛✘✜✢✚ ✣✚✛✤✥✦✘✧

★ ✩ ✪✫✬✭

★ ✩ ✪✫✮

50 iterations of (Gaussian) momentum smearing, α = 4

Page 17: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Dispersion relation

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 17 / 23

Page 18: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Excited states – plateau method

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 18 / 23

0 5 10 15���

0

0.4

0.8

1.2

1.6

��

����

��

� � ����� � �� � � � ��� � ��

0 5 10 15���

-0.6

-0.4

-0.2

0

����

��

��

� � �����

� �� � � � ��� � ��

Statistics:

• ts = 8a – 4320 measurements,

• ts = 9a – 8820 measurements,

• ts = 10a – 9000 measurements,

• ts = 12a – 72990 measurements.

Increasing ts by 1 lattice spacingworsens the signal by a factor 2-3!

Page 19: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Excited states – summation method

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 19 / 23

R(P ; ts) ≡∑ts−a

τ=aC3pt(P ;ts,τ)C2pt(Pi;ts)

=

= C +M ts +O(

e−(E1−E0)ts)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20

Re h

u-d

z/a

summation ts=8a-12a

summation ts=9a-12a

-0.6

-0.4

-0.2

0.0

0.2

0 5 10 15 20

Im h

u-d

z/a

summation ts=8a-12a

summation ts=9a-12a

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

7 8 9 10 11 12 13

Re Σ

R(z

/a=

12)

ts/a

fit ts=8a-12a

fit ts=9a-12a

Example: z/a = 12, real part

Page 20: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Excited states – 2-state fits

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 20 / 23

C2pt(P ; t) = |A0|2e−E0t + |A1|

2e−E1t

C3pt(P ; ts, τ) = |A0|2〈0|O|0〉e−E0ts +A∗

0A1〈1|O|0〉e−E1τe−E0(ts−τ)

+ A0A∗1〈0|O|1〉e−E0τe−E1(ts−τ) + |A1|

2〈1|O|1〉e−E1ts

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20

Re h

u-d

z/a

sequential 2-state ts=8a-12a

simultaneous 2-state ts=8a-12a

sequential 2-state ts=8a-10a

simultaneous 2-state ts=8a-10a

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0 5 10 15 20

Im h

u-d

z/a

sequential 2-state ts=8a-12a

simultaneous 2-state ts=8a-12a

sequential 2-state ts=8a-10a

simultaneous 2-state ts=8a-10a

Page 21: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Excited states – comparison

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 21 / 23

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 2 4 6 8 10 12

Re h

u-d

z/a

ts=8ats=9a

ts=10ats=12a

summation2-state

-0.6

-0.4

-0.2

0.0

0.2

0 2 4 6 8 10 12

Im h

u-d

z/a

ts=8ats=9a

ts=10ats=12a

summation2-state

• ts = 8a clearly off, excited states totally uncontrolled• ts = 9a, 10a also show some tension• ts = 12a ≈ 1.1 fm seems to be the best justifiable choice, i.e. it should be safe from excited

states at the ∼10% level.• Robust statements about excited states because of consistency between all methods.• Careful analysis needs to be repeated when aiming for larger momenta (increased excited

states contamination!) or better precision.

Page 22: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

Bare matrix elements at ts = 12a

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 22 / 23

-15 -10 -5 0 5 10 15���

0

0.2

0.4

0.6

0.8

1

1.2

1.4�� ������

� � ����� � ����� � ����

-15 -10 -5 0 5 10 15���

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 �� �������� � ����� � ����� � ����

-15 -10 -5 0 5 10 15���

0

0.2

0.4

0.6

0.8

1

1.2

1.4�� �������

� � ����� � ����� � ����

-15 -10 -5 0 5 10 15���

-0.4

-0.2

0

0.2

0.4�� ������

� � ����� � ����� � ����

-15 -10 -5 0 5 10 15���

-0.4

-0.2

0

0.2

0.4�� ������� � � ����

� � ����� � ����

-15 -10 -5 0 5 10 15���

-0.4

-0.2

0

0.2

0.4�� �������

� � ����� � ����� � ����

unpolarized (γ0) helicity (γ5γ3) transversity (σ3i)

STATISTICS: P3 = 6πL

– 4800 meas.

P3 = 8πL

– 38250 meas.

P3 = 10πL

– 72990 meas.

P3 = 6πL

– 6240 meas.

P3 = 8πL

– 38250 meas.

P3 = 10πL

– 72990 meas.

P3 = 6πL

– 9600 meas.

P3 = 8πL

– 38250 meas.

P3 = 10πL

– 72990 meas.

Page 23: Light-cone PDFs from lattice QCDindico.fnal.gov/event/15949/contributions/34817/attachments/21851/27126/cichy...nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice Results

End of part I

Outline of the talk

PDFs

Quasi-PDFs

Procedure

Renormalization

Matching

Systematics

Computation setup

Momentumsmearing

Dispersion relation

Excited states

Bare ME

Krzysztof Cichy Light-cone PDFs from lattice QCD – LATTICE 2018 – July 2018 – 23 / 23

To be continued

in next talk

Thank you for your attention!