Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and...

88
Lie Superalgebras Generalities Classification Root Systems Representation Theory Lie Superalgebras and Representation Theory Johan van de Leur Johan van de Leur Lie Superalgebras and Representation Theory

Transcript of Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and...

Page 1: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Lie Superalgebras and Representation Theory

Johan van de Leur

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 2: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Lie Superalgebras

A lie superalgebra g is a Z2-graded vector spaceg = g0 ⊕ g1 together with a multiplication [·, ·] thatsatisfies conditions:

I [·, ·] is bilinear and [ga, gb] ⊂ ga+b,

I supersymmetric: [a, b] = −(−)ab[b, a], wherea ∈ ga, b ∈ gb,

I Jacobi identity:

[a, [b, c]] = [[a, b], c] + (−)ab[b, [a, c]].

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 3: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Lie Superalgebras

A lie superalgebra g is a Z2-graded vector spaceg = g0 ⊕ g1 together with a multiplication [·, ·] thatsatisfies conditions:

I [·, ·] is bilinear and [ga, gb] ⊂ ga+b,

I supersymmetric: [a, b] = −(−)ab[b, a], wherea ∈ ga, b ∈ gb,

I Jacobi identity:

[a, [b, c]] = [[a, b], c] + (−)ab[b, [a, c]].

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 4: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Lie Superalgebras

A lie superalgebra g is a Z2-graded vector spaceg = g0 ⊕ g1 together with a multiplication [·, ·] thatsatisfies conditions:

I [·, ·] is bilinear and [ga, gb] ⊂ ga+b,

I supersymmetric: [a, b] = −(−)ab[b, a], wherea ∈ ga, b ∈ gb,

I Jacobi identity:

[a, [b, c]] = [[a, b], c] + (−)ab[b, [a, c]].

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 5: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Lie Superalgebras

A lie superalgebra g is a Z2-graded vector spaceg = g0 ⊕ g1 together with a multiplication [·, ·] thatsatisfies conditions:

I [·, ·] is bilinear and [ga, gb] ⊂ ga+b,

I supersymmetric: [a, b] = −(−)ab[b, a], wherea ∈ ga, b ∈ gb,

I Jacobi identity:

[a, [b, c]] = [[a, b], c] + (−)ab[b, [a, c]].

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 6: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 1, gl(m, n):

(Am,m OO Dn,n

)⊕

(O Bm,n

Cn,m O

)

gl(m, n) =gl(m, n)0 ⊕ gl(m, n)1, where

gl(m, n)0 =glm ⊕ gln,

gl(m, n)1 =Cm ⊗ Cn ⊕ Cn ⊗ Cm

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 7: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 1, gl(m, n):

(Am,m OO Dn,n

)⊕

(O Bm,n

Cn,m O

)gl(m, n) =gl(m, n)0 ⊕ gl(m, n)1, where

gl(m, n)0 =glm ⊕ gln,

gl(m, n)1 =Cm ⊗ Cn ⊕ Cn ⊗ Cm

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 8: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 2, sl(m, n) or A(m, n):

M =

(Am,m Bm,n

Cn,m Dn,n

)∈ gl(m, n)

supertrace: str M =m∑

i=1

aii −n∑

j=1

djj , then the

special linear Lie superalgebra:

sl(m, n) = {M ∈ gl(m, n) | str M = 0}.If m 6= n then sl(m, n) = A(m, n) is simple,

otherwise CI2n is an ideal. A(n, n) = sl(n, n)/CI2nis simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 9: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 2, sl(m, n) or A(m, n):

M =

(Am,m Bm,n

Cn,m Dn,n

)∈ gl(m, n)

supertrace: str M =m∑

i=1

aii −n∑

j=1

djj

, then the

special linear Lie superalgebra:

sl(m, n) = {M ∈ gl(m, n) | str M = 0}.If m 6= n then sl(m, n) = A(m, n) is simple,

otherwise CI2n is an ideal. A(n, n) = sl(n, n)/CI2nis simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 10: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 2, sl(m, n) or A(m, n):

M =

(Am,m Bm,n

Cn,m Dn,n

)∈ gl(m, n)

supertrace: str M =m∑

i=1

aii −n∑

j=1

djj , then the

special linear Lie superalgebra:

sl(m, n) = {M ∈ gl(m, n) | str M = 0}.

If m 6= n then sl(m, n) = A(m, n) is simple,otherwise CI2n is an ideal. A(n, n) = sl(n, n)/CI2nis simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 11: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 2, sl(m, n) or A(m, n):

M =

(Am,m Bm,n

Cn,m Dn,n

)∈ gl(m, n)

supertrace: str M =m∑

i=1

aii −n∑

j=1

djj , then the

special linear Lie superalgebra:

sl(m, n) = {M ∈ gl(m, n) | str M = 0}.If m 6= n then sl(m, n) = A(m, n) is simple,

otherwise CI2n is an ideal.

A(n, n) = sl(n, n)/CI2nis simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 12: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 2, sl(m, n) or A(m, n):

M =

(Am,m Bm,n

Cn,m Dn,n

)∈ gl(m, n)

supertrace: str M =m∑

i=1

aii −n∑

j=1

djj , then the

special linear Lie superalgebra:

sl(m, n) = {M ∈ gl(m, n) | str M = 0}.If m 6= n then sl(m, n) = A(m, n) is simple,

otherwise CI2n is an ideal. A(n, n) = sl(n, n)/CI2nis simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 13: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 3, osp(m, n)

Let

B =

iIm O OO O InO −In O

then the orthosymplectic Lie superalgebra:

osp(m, 2n) = {M ∈ gl(m, 2n) |MB + iMBM = 0}

B(m, n) = osp(2m + 1, 2n),D(m, n) = osp(2m, 2n),C (n) = osp(2, 2n − 2).

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 14: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 3, osp(m, n)

Let

B =

iIm O OO O InO −In O

then the orthosymplectic Lie superalgebra:

osp(m, 2n) = {M ∈ gl(m, 2n) |MB + iMBM = 0}

B(m, n) = osp(2m + 1, 2n),D(m, n) = osp(2m, 2n),C (n) = osp(2, 2n − 2).

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 15: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 4, the strange Lie algebra Q(n)

Q(n) = {(

a bb a

)∈ gl(n+1, n+1) |a ∈ gln+1, b ∈ sln+1}

CI2n+2 is an ideal in Q(n) andQ(n) = Q(n)/CI2n+2 is simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 16: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 4, the strange Lie algebra Q(n)

Q(n) = {(

a bb a

)∈ gl(n+1, n+1) |a ∈ gln+1, b ∈ sln+1}

CI2n+2 is an ideal in Q(n) andQ(n) = Q(n)/CI2n+2 is simple.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 17: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 5, the Cartan type superalgebra W (n)

Grassmann algebra Λ(n) = C[θ1, θ2, . . . θn]

,θi are Grassmann variables,satisfying θiθj = −θjθi and θ2

i = 0.

W (n) = der Λ(n) = {n∑

i=1

Pi∂

∂θi|Pi ∈ Λ(n)}

W (n) is simple for n ≥ 2

W (2) ' sl(2, 1)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 18: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 5, the Cartan type superalgebra W (n)

Grassmann algebra Λ(n) = C[θ1, θ2, . . . θn] ,θi are Grassmann variables,satisfying θiθj = −θjθi and θ2

i = 0.

W (n) = der Λ(n) = {n∑

i=1

Pi∂

∂θi|Pi ∈ Λ(n)}

W (n) is simple for n ≥ 2

W (2) ' sl(2, 1)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 19: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 5, the Cartan type superalgebra W (n)

Grassmann algebra Λ(n) = C[θ1, θ2, . . . θn] ,θi are Grassmann variables,satisfying θiθj = −θjθi and θ2

i = 0.

W (n) = der Λ(n) = {n∑

i=1

Pi∂

∂θi|Pi ∈ Λ(n)}

W (n) is simple for n ≥ 2

W (2) ' sl(2, 1)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 20: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 5, the Cartan type superalgebra W (n)

Grassmann algebra Λ(n) = C[θ1, θ2, . . . θn] ,θi are Grassmann variables,satisfying θiθj = −θjθi and θ2

i = 0.

W (n) = der Λ(n) = {n∑

i=1

Pi∂

∂θi|Pi ∈ Λ(n)}

W (n) is simple for n ≥ 2

W (2) ' sl(2, 1)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 21: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example 5, the Cartan type superalgebra W (n)

Grassmann algebra Λ(n) = C[θ1, θ2, . . . θn] ,θi are Grassmann variables,satisfying θiθj = −θjθi and θ2

i = 0.

W (n) = der Λ(n) = {n∑

i=1

Pi∂

∂θi|Pi ∈ Λ(n)}

W (n) is simple for n ≥ 2

W (2) ' sl(2, 1)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 22: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 23: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 24: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 25: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 26: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 27: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Semi-simple Lie Superalgebras?

For a Lie algebra one has the following equivalentstatements for semi-simplicity:

I g does not contain nonzero solvable ideals.

I g is the direct sum of simple Lie algebras.

I The Killing form of g is nondegenerate.

I All finite dimensional representations of g arecompletely reducible.

These conditions are not equivalent for Liesuperalgebras.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 28: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Graded representations

Let V = V0 ⊕ V1 be a graded vector space, wedefine a graded representation by

ρ : g → End V , such that

ρ(a)Vi = Vi+a a ∈ ga

and

ρ([a, b]) = ρ(a)ρ(b)− (−)abρ(b)ρ(a).

Ex. The adjoint representation: ad a(b) = [a, b]

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 29: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Graded representations

Let V = V0 ⊕ V1 be a graded vector space, wedefine a graded representation by

ρ : g → End V , such that

ρ(a)Vi = Vi+a a ∈ ga

and

ρ([a, b]) = ρ(a)ρ(b)− (−)abρ(b)ρ(a).

Ex. The adjoint representation: ad a(b) = [a, b]

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 30: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Graded representations

Let V = V0 ⊕ V1 be a graded vector space, wedefine a graded representation by

ρ : g → End V , such that

ρ(a)Vi = Vi+a a ∈ ga

and

ρ([a, b]) = ρ(a)ρ(b)− (−)abρ(b)ρ(a).

Ex. The adjoint representation: ad a(b) = [a, b]

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 31: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Killing form:

K(a, b) = str(ad a ad b)

Properties:

Supersymmetric: K(a, b) = (−)abK(b, a),Invariant:K(a,[b,c])=K([a,b],c),Even: K (g0, g1) = 0.

On sl(m, n): K(a, b) = 2(m − n)str(ab)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 32: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Killing form:

K(a, b) = str(ad a ad b)

Properties:

Supersymmetric: K(a, b) = (−)abK(b, a),

Invariant:K(a,[b,c])=K([a,b],c),Even: K (g0, g1) = 0.

On sl(m, n): K(a, b) = 2(m − n)str(ab)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 33: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Killing form:

K(a, b) = str(ad a ad b)

Properties:

Supersymmetric: K(a, b) = (−)abK(b, a),Invariant:K(a,[b,c])=K([a,b],c),

Even: K (g0, g1) = 0.

On sl(m, n): K(a, b) = 2(m − n)str(ab)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 34: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Killing form:

K(a, b) = str(ad a ad b)

Properties:

Supersymmetric: K(a, b) = (−)abK(b, a),Invariant:K(a,[b,c])=K([a,b],c),Even: K (g0, g1) = 0.

On sl(m, n): K(a, b) = 2(m − n)str(ab)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 35: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Killing form:

K(a, b) = str(ad a ad b)

Properties:

Supersymmetric: K(a, b) = (−)abK(b, a),Invariant:K(a,[b,c])=K([a,b],c),Even: K (g0, g1) = 0.

On sl(m, n): K(a, b) = 2(m − n)str(ab)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 36: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Poincare–Birkhoff–Witt

g = g0 ⊕ g1, witha1, a2, . . . , am basis g0,b1, b2, . . . , bn basis g1,basis universal enveloping Lie superalgebra U(g):

ak1

1 ak2

2 · · · akmm b`1

1 b`2

2 · · · b`nn

0 ≤ ki ∈ Z, `j = 0, 1.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 37: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Poincare–Birkhoff–Witt

g = g0 ⊕ g1, witha1, a2, . . . , am basis g0,b1, b2, . . . , bn basis g1,basis universal enveloping Lie superalgebra U(g):

ak1

1 ak2

2 · · · akmm b`1

1 b`2

2 · · · b`nn

0 ≤ ki ∈ Z, `j = 0, 1.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 38: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classification of simple finite dim. Lie superalgebras

There exist 3 types of Lie superalgebras:basic classical, strange classical and of Cartan type.

Classical: The representation of g0 on g1 iscompletely reducible.Basic: If there exists a nondegenerate, invariant,even bilinear form on g.Strange: Classical, but not basic.Cartan type: Defined as certain derivations.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 39: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classification of simple finite dim. Lie superalgebras

There exist 3 types of Lie superalgebras:basic classical, strange classical and of Cartan type.Classical: The representation of g0 on g1 iscompletely reducible.

Basic: If there exists a nondegenerate, invariant,even bilinear form on g.Strange: Classical, but not basic.Cartan type: Defined as certain derivations.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 40: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classification of simple finite dim. Lie superalgebras

There exist 3 types of Lie superalgebras:basic classical, strange classical and of Cartan type.Classical: The representation of g0 on g1 iscompletely reducible.Basic: If there exists a nondegenerate, invariant,even bilinear form on g.

Strange: Classical, but not basic.Cartan type: Defined as certain derivations.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 41: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classification of simple finite dim. Lie superalgebras

There exist 3 types of Lie superalgebras:basic classical, strange classical and of Cartan type.Classical: The representation of g0 on g1 iscompletely reducible.Basic: If there exists a nondegenerate, invariant,even bilinear form on g.Strange: Classical, but not basic.

Cartan type: Defined as certain derivations.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 42: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classification of simple finite dim. Lie superalgebras

There exist 3 types of Lie superalgebras:basic classical, strange classical and of Cartan type.Classical: The representation of g0 on g1 iscompletely reducible.Basic: If there exists a nondegenerate, invariant,even bilinear form on g.Strange: Classical, but not basic.Cartan type: Defined as certain derivations.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 43: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classical Lie superalgebras:

superalgebra g g0 g1

A(m, n) C⊕ Am ⊕ An glm+1 ⊗ sln+1 ⊕ contragr.A(n, n) An ⊕ An sln+1 ⊗ sln+1 ⊕ contragr.

C (n + 1) Cn ⊕ C sp2n−2 ⊗ C⊕ contragr.

B(m, n) Bm ⊕ Cn so2m+1 ⊗ sp2n

D(m, n) Dm ⊕ Cn so2m ⊗ sp2n

F (4) A1 ⊕ B3 sl2 ⊗ spin7

G (3) A1 ⊕ G2 sl2 ⊗ G2

D(2, 1;α) A1 ⊕ A1 ⊕ A1 sl2 ⊗ sl2 ⊗ sl2

P(n) An Λ2sl∗n+1 ⊕ S2sln+1

Q(n) An ad sln+1

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 44: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classical Lie superalgebras:

superalgebra g g0 g1

A(m, n) C⊕ Am ⊕ An glm+1 ⊗ sln+1 ⊕ contragr.A(n, n) An ⊕ An sln+1 ⊗ sln+1 ⊕ contragr.

C (n + 1) Cn ⊕ C sp2n−2 ⊗ C⊕ contragr.B(m, n) Bm ⊕ Cn so2m+1 ⊗ sp2n

D(m, n) Dm ⊕ Cn so2m ⊗ sp2n

F (4) A1 ⊕ B3 sl2 ⊗ spin7

G (3) A1 ⊕ G2 sl2 ⊗ G2

D(2, 1;α) A1 ⊕ A1 ⊕ A1 sl2 ⊗ sl2 ⊗ sl2

P(n) An Λ2sl∗n+1 ⊕ S2sln+1

Q(n) An ad sln+1

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 45: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Classical Lie superalgebras:

superalgebra g g0 g1

A(m, n) C⊕ Am ⊕ An glm+1 ⊗ sln+1 ⊕ contragr.A(n, n) An ⊕ An sln+1 ⊗ sln+1 ⊕ contragr.

C (n + 1) Cn ⊕ C sp2n−2 ⊗ C⊕ contragr.B(m, n) Bm ⊕ Cn so2m+1 ⊗ sp2n

D(m, n) Dm ⊕ Cn so2m ⊗ sp2n

F (4) A1 ⊕ B3 sl2 ⊗ spin7

G (3) A1 ⊕ G2 sl2 ⊗ G2

D(2, 1;α) A1 ⊕ A1 ⊕ A1 sl2 ⊗ sl2 ⊗ sl2

P(n) An Λ2sl∗n+1 ⊕ S2sln+1

Q(n) An ad sln+1

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 46: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Cartan type: W (n), H(n), S(n), S(n)

Let ω = (dθ1)2 + · · ·+ (dθn)

2, then

H(n) = {D ∈ W (n) |D(ω) = 0}

and

H(n) = [H(n), H(n)].

S(n) = {∑

i

Pi∂

∂θi|∑

i

∂Pi

∂θi= 0}.

S(n) = {D ∈ W (n) |D((1 + θ1θ2 · · · θn)ξθ1 ∧ · · · ∧ ξθn) = 0}

here ξ is a differential of degree 0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 47: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Cartan type: W (n), H(n), S(n), S(n)

Let ω = (dθ1)2 + · · ·+ (dθn)

2, then

H(n) = {D ∈ W (n) |D(ω) = 0} and

H(n) = [H(n), H(n)].

S(n) = {∑

i

Pi∂

∂θi|∑

i

∂Pi

∂θi= 0}.

S(n) = {D ∈ W (n) |D((1 + θ1θ2 · · · θn)ξθ1 ∧ · · · ∧ ξθn) = 0}

here ξ is a differential of degree 0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 48: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Cartan type: W (n), H(n), S(n), S(n)

Let ω = (dθ1)2 + · · ·+ (dθn)

2, then

H(n) = {D ∈ W (n) |D(ω) = 0} and

H(n) = [H(n), H(n)].

S(n) = {∑

i

Pi∂

∂θi|∑

i

∂Pi

∂θi= 0}.

S(n) = {D ∈ W (n) |D((1 + θ1θ2 · · · θn)ξθ1 ∧ · · · ∧ ξθn) = 0}

here ξ is a differential of degree 0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 49: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Cartan type: W (n), H(n), S(n), S(n)

Let ω = (dθ1)2 + · · ·+ (dθn)

2, then

H(n) = {D ∈ W (n) |D(ω) = 0} and

H(n) = [H(n), H(n)].

S(n) = {∑

i

Pi∂

∂θi|∑

i

∂Pi

∂θi= 0}.

S(n) = {D ∈ W (n) |D((1 + θ1θ2 · · · θn)ξθ1 ∧ · · · ∧ ξθn) = 0}

here ξ is a differential of degree 0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 50: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.

Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 51: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 52: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots

, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 53: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 54: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.

Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 55: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Root systems

Let g be a basic classical Lie superalgebra.Fix a Cartan subalgebra of h ∈ g0 and make the root spacedecomposition:

g = h⊕⊕

0 6=α∈h∗

gα,

α is called a root if gα ∩ g 6= 0. Let ∆ be the set of roots, then

∆ = ∆0 ∪∆1 disjoint union

Problem: There is not a unique simple root system.Fix a simple rootsystem of ∆0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 56: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Weyl group

If α ∈ ∆ is non-isotropic, i.e. (α, α) 6= 0, then one can definereflections:

rα(β) = β − 2(β, α)

(α, α)α

and the Weyl group W is the group generated by all suchreflections.

Then: W is the Weyl group of g0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 57: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Weyl group

If α ∈ ∆ is non-isotropic, i.e. (α, α) 6= 0, then one can definereflections:

rα(β) = β − 2(β, α)

(α, α)α

and the Weyl group W is the group generated by all suchreflections.Then: W is the Weyl group of g0.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 58: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(m − 1, n − 1)

g0 = slm ⊕ sln(⊕C)

Then

∆0 = {εi − εj , δk − δ` | 1 ≤ i , j ≤ m, 1 ≤ k, ` ≤ n}

with bilinear form

(εi , εj) = δij , (δk , δ`) = −δk`, (εi , δk) = 0.

W = Sm ×Sn, i.e. (permutations of ε’s)×(permutations of δ’s).Odd roots:

∆1 = {εi − δk , δk − εi | 1 ≤ i ≤ m, 1 ≤ k ≤ n}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 59: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(m − 1, n − 1)

g0 = slm ⊕ sln(⊕C)

Then

∆0 = {εi − εj , δk − δ` | 1 ≤ i , j ≤ m, 1 ≤ k, ` ≤ n}

with bilinear form

(εi , εj) = δij , (δk , δ`) = −δk`, (εi , δk) = 0.

W = Sm ×Sn, i.e. (permutations of ε’s)×(permutations of δ’s).Odd roots:

∆1 = {εi − δk , δk − εi | 1 ≤ i ≤ m, 1 ≤ k ≤ n}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 60: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(m − 1, n − 1)

g0 = slm ⊕ sln(⊕C)

Then

∆0 = {εi − εj , δk − δ` | 1 ≤ i , j ≤ m, 1 ≤ k, ` ≤ n}

with bilinear form

(εi , εj) = δij , (δk , δ`) = −δk`, (εi , δk) = 0.

W = Sm ×Sn, i.e. (permutations of ε’s)×(permutations of δ’s).

Odd roots:

∆1 = {εi − δk , δk − εi | 1 ≤ i ≤ m, 1 ≤ k ≤ n}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 61: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(m − 1, n − 1)

g0 = slm ⊕ sln(⊕C)

Then

∆0 = {εi − εj , δk − δ` | 1 ≤ i , j ≤ m, 1 ≤ k, ` ≤ n}

with bilinear form

(εi , εj) = δij , (δk , δ`) = −δk`, (εi , δk) = 0.

W = Sm ×Sn, i.e. (permutations of ε’s)×(permutations of δ’s).Odd roots:

∆1 = {εi − δk , δk − εi | 1 ≤ i ≤ m, 1 ≤ k ≤ n}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 62: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Simple root systems for A(m − 1, n − 1):

ε1 − ε2, . . . , εi1−1 − εi1 , εi1 − δ1, δ1 − δ2, . . . , δj1−1 − δj1 , δj1 − εi1+1,

εi1+1 − εi1+2, . . . , εi2−1 − εi2 , εi2 − δj1+1, δj1+1 − δj1+2, . . .

And also one which starts with δ1, so ε’s and δ’s interchanged.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 63: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Simple root systems for A(m − 1, n − 1):

ε1 − ε2, . . . , εi1−1 − εi1 , εi1 − δ1, δ1 − δ2, . . . , δj1−1 − δj1 , δj1 − εi1+1,

εi1+1 − εi1+2, . . . , εi2−1 − εi2 , εi2 − δj1+1, δj1+1 − δj1+2, . . .

And also one which starts with δ1, so ε’s and δ’s interchanged.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 64: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(1, 0), simple root system and Cartan matrix

ε1 − ε2, ε2 − δ

(2 −1−1 0

)

ε1 − δ, δ − ε2

(0 −1−1 0

)

δ − ε1, ε1 − ε2

(0 −1−1 2

)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 65: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example A(1, 0), simple root system and Cartan matrix

ε1 − ε2, ε2 − δ

(2 −1−1 0

)ε1 − δ, δ − ε2

(0 −1−1 0

)δ − ε1, ε1 − ε2

(0 −1−1 2

)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 66: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example D(2, 1; α)

D(2, 1;α) = A1 ⊕ A1 ⊕ A1 ⊕ sl2 ⊗ sl2 ⊗ sl2

Possible Cartan matrices (α 6= 0,−1): 2 −1 0−1 0 −α0 −α 2α

,

0 −1 1 + α−1 0 −α

1 + α −α 0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 67: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example D(2, 1; α)

D(2, 1;α) = A1 ⊕ A1 ⊕ A1 ⊕ sl2 ⊗ sl2 ⊗ sl2

Possible Cartan matrices (α 6= 0,−1): 2 −1 0−1 0 −α0 −α 2α

,

0 −1 1 + α−1 0 −α

1 + α −α 0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 68: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Example D(2, 1; α)

D(2, 1;α) = A1 ⊕ A1 ⊕ A1 ⊕ sl2 ⊗ sl2 ⊗ sl2

Possible Cartan matrices (α 6= 0,−1): 2 −1 0−1 0 −α0 −α 2α

,

0 −1 1 + α−1 0 −α

1 + α −α 0

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 69: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.

Hence not one set of positive roots ∆+.Solution, we fix for every basic superalgebra one simple rootsystem.E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}∆+

1= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 70: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.Hence not one set of positive roots ∆+.

Solution, we fix for every basic superalgebra one simple rootsystem.E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}∆+

1= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 71: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.Hence not one set of positive roots ∆+.Solution, we fix for every basic superalgebra one simple rootsystem.

E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}∆+

1= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 72: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.Hence not one set of positive roots ∆+.Solution, we fix for every basic superalgebra one simple rootsystem.E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}∆+

1= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 73: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.Hence not one set of positive roots ∆+.Solution, we fix for every basic superalgebra one simple rootsystem.E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}

∆+1

= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 74: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Irreducible Highest Weight Representations

Problem: Not one unique simple root system.Hence not one set of positive roots ∆+.Solution, we fix for every basic superalgebra one simple rootsystem.E.g. for A(m − 1, n − 1), we choose

ε1 − ε2, . . . , εm−1 − εm, εm − δ1, δ1 − δ2, . . . , δn−1 − δn

∆+0

= {εi − εj , δi − δj | i < j}∆+

1= {εi − δj}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 75: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Let Λ ∈ h∗ and let V (Λ) be the irreducible highest weight modulefor g with respect to the triangular decomposition

g =⊕

α∈∆+

g−α ⊕ h⊕⊕

α∈∆+

ThenV (λ) =

⊕µ∈h∗

Vµ,

whereVµ = {v ∈ V (Λ) | hv = µ(h)v for all h ∈ h}.

Related to this we define the formal character

chV (Λ) =∑µ∈h∗

dim(Vµ)eµ

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 76: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Let Λ ∈ h∗ and let V (Λ) be the irreducible highest weight modulefor g with respect to the triangular decomposition

g =⊕

α∈∆+

g−α ⊕ h⊕⊕

α∈∆+

ThenV (λ) =

⊕µ∈h∗

Vµ,

whereVµ = {v ∈ V (Λ) | hv = µ(h)v for all h ∈ h}.

Related to this we define the formal character

chV (Λ) =∑µ∈h∗

dim(Vµ)eµ

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 77: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Let Λ ∈ h∗ and let V (Λ) be the irreducible highest weight modulefor g with respect to the triangular decomposition

g =⊕

α∈∆+

g−α ⊕ h⊕⊕

α∈∆+

ThenV (λ) =

⊕µ∈h∗

Vµ,

whereVµ = {v ∈ V (Λ) | hv = µ(h)v for all h ∈ h}.

Related to this we define the formal character

chV (Λ) =∑µ∈h∗

dim(Vµ)eµ

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 78: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Typical and Atypical Representations

Λ is called dominant integral if

0 ≤ 2(Λ, α)

(α, α)∈ Z, for all α ∈ ∆+

0

Let

ρ0 =1

2

∑α∈∆+

0

α, ρ1 =1

2

∑α∈∆+

1

α, ρ = ρ0 − ρ1

We call the the weight Λ and module V (Λ) typical if

(Λ + ρ, α) 6= 0, for all α ∈ ∆+1,

otherwise it is called atypical.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 79: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Typical and Atypical Representations

Λ is called dominant integral if

0 ≤ 2(Λ, α)

(α, α)∈ Z, for all α ∈ ∆+

0

Let

ρ0 =1

2

∑α∈∆+

0

α, ρ1 =1

2

∑α∈∆+

1

α, ρ = ρ0 − ρ1

We call the the weight Λ and module V (Λ) typical if

(Λ + ρ, α) 6= 0, for all α ∈ ∆+1,

otherwise it is called atypical.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 80: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Typical and Atypical Representations

Λ is called dominant integral if

0 ≤ 2(Λ, α)

(α, α)∈ Z, for all α ∈ ∆+

0

Let

ρ0 =1

2

∑α∈∆+

0

α, ρ1 =1

2

∑α∈∆+

1

α, ρ = ρ0 − ρ1

We call the the weight Λ and module V (Λ) typical if

(Λ + ρ, α) 6= 0, for all α ∈ ∆+1,

otherwise it is called atypical.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 81: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Theorem (Kac). If Λ is a dominant integral typical weight, then

chV (Λ) =L1

L0

∑w∈W

ε(w)ew(Λ+ρ),

where ε(w) is the signature of w

and

L0 =∏

α∈∆+0

(eα/2 − e−α/2

), L1 =

∏β∈∆+

1

(eβ/2 + e−β/2

)Note that w(L1) = L1 and that

ew(λ+ρ)L1 =w

eλ+ρ0e−ρ1∏

β∈∆+1

(eβ/2 + e−β/2

)=w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 82: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Theorem (Kac). If Λ is a dominant integral typical weight, then

chV (Λ) =L1

L0

∑w∈W

ε(w)ew(Λ+ρ),

where ε(w) is the signature of w and

L0 =∏

α∈∆+0

(eα/2 − e−α/2

), L1 =

∏β∈∆+

1

(eβ/2 + e−β/2

)

Note that w(L1) = L1 and that

ew(λ+ρ)L1 =w

eλ+ρ0e−ρ1∏

β∈∆+1

(eβ/2 + e−β/2

)=w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 83: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Theorem (Kac). If Λ is a dominant integral typical weight, then

chV (Λ) =L1

L0

∑w∈W

ε(w)ew(Λ+ρ),

where ε(w) is the signature of w and

L0 =∏

α∈∆+0

(eα/2 − e−α/2

), L1 =

∏β∈∆+

1

(eβ/2 + e−β/2

)Note that w(L1) = L1 and that

ew(λ+ρ)L1 =w

eλ+ρ0e−ρ1∏

β∈∆+1

(eβ/2 + e−β/2

)=w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)Johan van de Leur

Lie Superalgebras and Representation Theory

Page 84: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Thus

chV (Λ) =1

L0

∑w∈W

ε(w)w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)

For atypical weights of gl(m, n) the formula is more complicated,this formula was conjectured by Van der Jeugt, Hughes, King andThierry-Mieg and a proof was given by Su and Zhang.Important ingredient are the set of atypical roots for the weight Λ,this is the set

ΓΛ = {α ∈ ∆+1|(Λ + ρ, α) = 0}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 85: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Thus

chV (Λ) =1

L0

∑w∈W

ε(w)w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)For atypical weights of gl(m, n) the formula is more complicated,

this formula was conjectured by Van der Jeugt, Hughes, King andThierry-Mieg and a proof was given by Su and Zhang.

Important ingredient are the set of atypical roots for the weight Λ,this is the set

ΓΛ = {α ∈ ∆+1|(Λ + ρ, α) = 0}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 86: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

Thus

chV (Λ) =1

L0

∑w∈W

ε(w)w

eλ+ρ0∏

β∈∆+1

(1 + e−β

)For atypical weights of gl(m, n) the formula is more complicated,

this formula was conjectured by Van der Jeugt, Hughes, King andThierry-Mieg and a proof was given by Su and Zhang.Important ingredient are the set of atypical roots for the weight Λ,this is the set

ΓΛ = {α ∈ ∆+1|(Λ + ρ, α) = 0}

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 87: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

For certain dominant integral atypical weights Λ which are socalled totally disconnected, which is some technical term, theformal character is as follows

chV (Λ) =1

L0

∑w∈W

ε(w)w

eλ+ρ0∏

β∈∆+1\ΓΛ

(1 + e−β

)

E.g. if Λ 6= 0 and |ΓΛ| = 1, then Λ is totally disconnected.

Johan van de Leur

Lie Superalgebras and Representation Theory

Page 88: Lie Superalgebras and Representation Theoryleur0102/superalg.pdf · Lie Superalgebras and Representation Theory. Lie Superalgebras Generalities Classification Root Systems Representation

Lie Superalgebras Generalities Classification Root Systems Representation Theory

For certain dominant integral atypical weights Λ which are socalled totally disconnected, which is some technical term, theformal character is as follows

chV (Λ) =1

L0

∑w∈W

ε(w)w

eλ+ρ0∏

β∈∆+1\ΓΛ

(1 + e−β

)E.g. if Λ 6= 0 and |ΓΛ| = 1, then Λ is totally disconnected.

Johan van de Leur

Lie Superalgebras and Representation Theory