Lesson 6: Limits Involving Infinity

70
. . . . . . Section 1.6 Limits involving Infinity V63.0121.027, Calculus I September 22, 2009 Announcements I Quiz 1 this week (§§1.1–1.3) I Written Assignment 2 due Thursday

description

Infinity is a dangerous place where the rules of arithmetic break down. But it is a useful concept and study both infinite limits and limits at infinity.

Transcript of Lesson 6: Limits Involving Infinity

Page 1: Lesson 6: Limits Involving Infinity

. . . . . .

Section1.6LimitsinvolvingInfinity

V63.0121.027, CalculusI

September22, 2009

Announcements

I Quiz1thisweek(§§1.1–1.3)I WrittenAssignment2dueThursday

Page 2: Lesson 6: Limits Involving Infinity

. . . . . .

Recallthedefinitionoflimit

DefinitionWewrite

limx→a

f(x) = L

andsay

“thelimitof f(x), as x approaches a, equals L”

ifwecanmakethevaluesof f(x) arbitrarilycloseto L (asclosetoL aswelike)bytaking x tobesufficientlycloseto a (oneithersideof a)butnotequalto a.

Page 3: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 4: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 5: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 6: Lesson 6: Limits Involving Infinity

. . . . . .

Recalltheunboundednessproblem

Recallwhy limx→0+

1xdoesn’texist.

. .x

.y

..L?

Nomatterhowthinwedrawthestriptotherightof x = 0, wecannot“capture”thegraphinsidethebox.

Page 7: Lesson 6: Limits Involving Infinity

. . . . . .

Outline

InfiniteLimitsVerticalAsymptotesInfiniteLimitsweKnowLimit“Laws”withInfiniteLimitsIndeterminateLimitforms

Limitsat ∞AlgebraicratesofgrowthRationalizingtogetalimit

Page 8: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 9: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 10: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 11: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 12: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 13: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 14: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 15: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimits

DefinitionThenotation

limx→a

f(x) = ∞

meansthatvaluesof f(x) canbemadearbitrarily large (aslarge asweplease)bytakingx sufficientlycloseto a butnotequalto a.

I “Large”takestheplaceof“closeto L”.

. .x

.y

Page 16: Lesson 6: Limits Involving Infinity

. . . . . .

NegativeInfinity

DefinitionThenotation

limx→a

f(x) = −∞

meansthatthevaluesof f(x) canbemadearbitrarilylargenegative (aslargeasweplease)bytaking x sufficientlycloseto abutnotequalto a.

I Wecallanumber large or small basedonitsabsolutevalue.So −1, 000, 000 isalarge(negative)number.

Page 17: Lesson 6: Limits Involving Infinity

. . . . . .

NegativeInfinity

DefinitionThenotation

limx→a

f(x) = −∞

meansthatthevaluesof f(x) canbemadearbitrarilylargenegative (aslargeasweplease)bytaking x sufficientlycloseto abutnotequalto a.

I Wecallanumber large or small basedonitsabsolutevalue.So −1, 000, 000 isalarge(negative)number.

Page 18: Lesson 6: Limits Involving Infinity

. . . . . .

VerticalAsymptotes

DefinitionTheline x = a iscalleda verticalasymptote ofthecurve y = f(x)ifatleastoneofthefollowingistrue:

I limx→a

f(x) = ∞

I limx→a+

f(x) = ∞

I limx→a−

f(x) = ∞

I limx→a

f(x) = −∞

I limx→a+

f(x) = −∞

I limx→a−

f(x) = −∞

Page 19: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x

= ∞

I limx→0−

1x

= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 20: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x

= ∞

I limx→0−

1x

= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 21: Lesson 6: Limits Involving Infinity

. . . . . .

InfiniteLimitsweKnow

I limx→0+

1x

= ∞

I limx→0−

1x

= −∞

I limx→0

1x2

= ∞

. .x

.y

.

.

.

.

.

.

.

.

.

.

.

.

Page 22: Lesson 6: Limits Involving Infinity

. . . . . .

Findinglimitsattroublespots

ExampleLet

f(t) =t2 + 2

t2 − 3t + 2

Find limt→a−

f(t) and limt→a+

f(t) foreach a atwhich f isnotcontinuous.

SolutionThedenominatorfactorsas (t− 1)(t− 2). Wecanrecordthesignsofthefactorsonthenumberline.

Page 23: Lesson 6: Limits Involving Infinity

. . . . . .

Findinglimitsattroublespots

ExampleLet

f(t) =t2 + 2

t2 − 3t + 2

Find limt→a−

f(t) and limt→a+

f(t) foreach a atwhich f isnotcontinuous.

SolutionThedenominatorfactorsas (t− 1)(t− 2). Wecanrecordthesignsofthefactorsonthenumberline.

Page 24: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 25: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 26: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 27: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 28: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+

.±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 29: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞

.− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 30: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .−

.∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 31: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞

.+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 32: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 33: Lesson 6: Limits Involving Infinity

. . . . . .

Usethenumberline

. .(t− 1).− .

.1

.0 .+

.(t− 2).− .

.2

.0 .+

.(t2 + 2).+

.f(t)..1

..2

.+ .±∞ .− .∓∞ .+

Solimx→1−

f(x) = +∞ limx→2−

f(x) = −∞

limx→1+

f(x) = −∞ limx→2+

f(x) = +∞

Page 34: Lesson 6: Limits Involving Infinity

. . . . . .

InEnglish, now

Toexplainthelimit, youcansay:“As t → 1−, thenumeratorapproaches 2, andthedenominatorapproaches 0 whileremainingpositive. Sothelimitis +∞.”

Page 35: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 36: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 37: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 38: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 39: Lesson 6: Limits Involving Infinity

. . . . . .

Thegraphsofar

. .x

.y

..−1

..1

..2

..3

Page 40: Lesson 6: Limits Involving Infinity

. . . . . .

LimitLaws(?) withinfinitelimits

I If limx→a

f(x) = ∞ and limx→a

g(x) = ∞, then limx→a

(f(x) + g(x)) = ∞.

Thatis,

..∞ + ∞ = ∞

I If limx→a

f(x) = −∞ and limx→a

g(x) = −∞, then

limx→a

(f(x) + g(x)) = −∞. Thatis,

..−∞−∞ = −∞

Page 41: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumb withinfinitelimits

I If limx→a

f(x) = ∞ and limx→a

g(x) = ∞, then limx→a

(f(x) + g(x)) = ∞.

Thatis,

..∞ + ∞ = ∞

I If limx→a

f(x) = −∞ and limx→a

g(x) = −∞, then

limx→a

(f(x) + g(x)) = −∞. Thatis,

..−∞−∞ = −∞

Page 42: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumbwithinfinitelimits

I If limx→a

f(x) = L and limx→a

g(x) = ±∞, then

limx→a

(f(x) + g(x)) = ±∞. Thatis,

..L + ∞ = ∞L−∞ = −∞

Page 43: Lesson 6: Limits Involving Infinity

. . . . . .

RulesofThumbwithinfinitelimitsKids, don’ttrythisathome!

I Theproductofafinitelimitandaninfinitelimitisinfinite ifthefinitelimitisnot0.

..L · ∞ =

{∞ if L > 0

−∞ if L < 0.

..L · (−∞) =

{−∞ if L > 0

∞ if L < 0.

Page 44: Lesson 6: Limits Involving Infinity

. . . . . .

MultiplyinginfinitelimitsKids, don’ttrythisathome!

I Theproductoftwoinfinitelimitsisinfinite.

..

∞ ·∞ = ∞∞ · (−∞) = −∞

(−∞) · (−∞) = ∞

Page 45: Lesson 6: Limits Involving Infinity

. . . . . .

DividingbyInfinityKids, don’ttrythisathome!

I Thequotientofafinitelimitbyaninfinitelimitiszero:

..L∞

= 0

Page 46: Lesson 6: Limits Involving Infinity

. . . . . .

Dividingbyzeroisstillnotallowed

..

10

= ∞

Thereareexamplesofsuchlimitformswherethelimitis ∞, −∞,undecidedbetweenthetwo, ortrulyneither.

Page 47: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateLimitforms

LimitsoftheformL0are indeterminate. Thereisnorulefor

evaluatingsuchaform; thelimitmustbeexaminedmoreclosely.Considerthese:

limx→0

1x2

= ∞ limx→0

−1x2

= −∞

limx→0+

1x

= ∞ limx→0−

1x

= −∞

Worst, limx→0

1x sin(1/x)

isoftheformL0, butthelimitdoesnot

exist, evenintheleft-orright-handsense. Thereareinfinitelymanyverticalasymptotesarbitrarilycloseto0!

Page 48: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateLimitforms

Limitsoftheform 0 · ∞ and ∞−∞ arealsoindeterminate.

Example

I Thelimit limx→0+

sin x · 1xisoftheform 0 · ∞, buttheansweris

1.

I Thelimit limx→0+

sin2 x · 1xisoftheform 0 ·∞, buttheansweris

0.

I Thelimit limx→0+

sin x · 1x2

isoftheform 0 · ∞, buttheansweris∞.

Limitsofindeterminateformsmayormaynot“exist.” Itwilldependonthecontext.

Page 49: Lesson 6: Limits Involving Infinity

. . . . . .

IndeterminateformsarelikeTugOfWar

Whichsidewinsdependsonwhichsideisstronger.

Page 50: Lesson 6: Limits Involving Infinity

. . . . . .

Outline

InfiniteLimitsVerticalAsymptotesInfiniteLimitsweKnowLimit“Laws”withInfiniteLimitsIndeterminateLimitforms

Limitsat ∞AlgebraicratesofgrowthRationalizingtogetalimit

Page 51: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 52: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 53: Lesson 6: Limits Involving Infinity

. . . . . .

DefinitionLet f beafunctiondefinedonsomeinterval (a,∞). Then

limx→∞

f(x) = L

meansthatthevaluesof f(x) canbemadeascloseto L aswelike, bytaking x sufficientlylarge.

DefinitionTheline y = L isacalleda horizontalasymptote ofthecurvey = f(x) ifeither

limx→∞

f(x) = L or limx→−∞

f(x) = L.

y = L isa horizontal line!

Page 54: Lesson 6: Limits Involving Infinity

. . . . . .

Basiclimitsatinfinity

TheoremLet n beapositiveinteger. Then

I limx→∞

1xn

= 0

I limx→−∞

1xn

= 0

Page 55: Lesson 6: Limits Involving Infinity

. . . . . .

Usingthelimitlawstocomputelimitsat ∞

ExampleFind

limx→∞

2x3 + 3x + 14x3 + 5x2 + 7

ifitexists.

A doesnotexist

B 1/2

C 0

D ∞

Page 56: Lesson 6: Limits Involving Infinity

. . . . . .

Usingthelimitlawstocomputelimitsat ∞

ExampleFind

limx→∞

2x3 + 3x + 14x3 + 5x2 + 7

ifitexists.

A doesnotexist

B 1/2

C 0

D ∞

Page 57: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionFactoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

2x3 + 3x + 14x3 + 5x2 + 7

=x3(2 + 3/x2 + 1/x3)

x3(4 + 5/x + 7/x3)

limx→∞

2x3 + 3x + 14x3 + 5x2 + 7

= limx→∞

2 + 3/x2 + 1/x3

4 + 5/x + 7/x3

=2 + 0 + 04 + 0 + 0

=12

UpshotWhenfindinglimitsofalgebraicexpressionsatinfinity, lookatthe highestdegreeterms.

Page 58: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionFactoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

2x3 + 3x + 14x3 + 5x2 + 7

=x3(2 + 3/x2 + 1/x3)

x3(4 + 5/x + 7/x3)

limx→∞

2x3 + 3x + 14x3 + 5x2 + 7

= limx→∞

2 + 3/x2 + 1/x3

4 + 5/x + 7/x3

=2 + 0 + 04 + 0 + 0

=12

UpshotWhenfindinglimitsofalgebraicexpressionsatinfinity, lookatthe highestdegreeterms.

Page 59: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 60: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 61: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionAgain, factoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

xx2 + 1

=x(1)

x2(1 + 1/x2)=

1x· 11 + 1/x2

limx→∞

xx2 + 1

= limx→∞

1x

11 + 1/x2

= limx→∞

1x· limx→∞

11 + 1/x2

= 0 · 11 + 0

= 0.

RemarkHadthehigherpowerbeeninthenumerator, thelimitwouldhavebeen ∞.

Page 62: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 63: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind lim

x→∞

xx2 + 1

AnswerThelimitis 0.

. .x

.y

Noticethatthegraphdoescrosstheasymptote, whichcontradictsoneoftheheuristicdefinitionsofasymptote.

Page 64: Lesson 6: Limits Involving Infinity

. . . . . .

SolutionAgain, factoroutthelargestpowerof x fromthenumeratoranddenominator. Wehave

xx2 + 1

=x(1)

x2(1 + 1/x2)=

1x· 11 + 1/x2

limx→∞

xx2 + 1

= limx→∞

1x

11 + 1/x2

= limx→∞

1x· limx→∞

11 + 1/x2

= 0 · 11 + 0

= 0.

RemarkHadthehigherpowerbeeninthenumerator, thelimitwouldhavebeen ∞.

Page 65: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind

limx→∞

√3x4 + 7x2 + 3

..√3x4 + 7 ∼

√3x4 =

√3x2

AnswerThelimitis

√3.

Page 66: Lesson 6: Limits Involving Infinity

. . . . . .

AnotherExample

ExampleFind

limx→∞

√3x4 + 7x2 + 3

..√3x4 + 7 ∼

√3x4 =

√3x2

AnswerThelimitis

√3.

Page 67: Lesson 6: Limits Involving Infinity

. . . . . .

Solution

limx→∞

√3x4 + 7x2 + 3

= limx→∞

√x4(3 + 7/x4)

x2(1 + 3/x2)

= limx→∞

x2√

(3 + 7/x4)

x2(1 + 3/x2)

= limx→∞

√(3 + 7/x4)

1 + 3/x2

=

√3 + 01 + 0

=√3.

Page 68: Lesson 6: Limits Involving Infinity

. . . . . .

Rationalizingtogetalimit

ExampleCompute lim

x→∞

(√4x2 + 17− 2x

).

SolutionThislimitisoftheform ∞−∞, whichwecannotuse. Sowerationalizethenumerator(thedenominatoris 1)togetanexpressionthatwecanusethelimitlawson.

limx→∞

(√4x2 + 17− 2x

)= lim

x→∞

(√4x2 + 17− 2x

)·√4x2 + 17 + 2x√4x2 + 17 + 2x

= limx→∞

(4x2 + 17) − 4x2√4x2 + 17 + 2x

= limx→∞

17√4x2 + 17 + 2x

= 0

Page 69: Lesson 6: Limits Involving Infinity

. . . . . .

Rationalizingtogetalimit

ExampleCompute lim

x→∞

(√4x2 + 17− 2x

).

SolutionThislimitisoftheform ∞−∞, whichwecannotuse. Sowerationalizethenumerator(thedenominatoris 1)togetanexpressionthatwecanusethelimitlawson.

limx→∞

(√4x2 + 17− 2x

)= lim

x→∞

(√4x2 + 17− 2x

)·√4x2 + 17 + 2x√4x2 + 17 + 2x

= limx→∞

(4x2 + 17) − 4x2√4x2 + 17 + 2x

= limx→∞

17√4x2 + 17 + 2x

= 0

Page 70: Lesson 6: Limits Involving Infinity

. . . . . .

Summary

I Infinityisamorecomplicatedconceptthanasinglenumber.Therearerulesofthumb, buttherearealsoexceptions.

I Takeatwo-prongedapproachtolimitsinvolvinginfinity:I Lookattheexpressiontoguessthelimit.I Uselimitrulesandalgebratoverifyit.