Lesson 30: Integration by Parts

38
. . . . . . Section 5.6 Integration by Parts Math 1a Introduction to Calculus April 23, 2008 Announcements Midterm III is Wednesday 4/30 in class (covers §5.1–5.6) Friday 5/2 is Movie Day! Final (tentative) 5/23 9:15am Problem Sessions Sunday, Thursday, 7pm, SC 310 Office hours Tues, Weds, 2–4pm SC 323 . Image: Flickr user Powi...(ponanwi)

description

Integration by parts "undoes" the product rule

Transcript of Lesson 30: Integration by Parts

Page 1: Lesson 30: Integration by Parts

. . . . . .

Section5.6IntegrationbyParts

Math1aIntroductiontoCalculus

April23, 2008

Announcements

◮ MidtermIII isWednesday4/30inclass(covers§5.1–5.6)◮ Friday5/2isMovieDay!◮ Final(tentative)5/239:15am◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

.

.Image: FlickruserPowi...(ponanwi)

Page 2: Lesson 30: Integration by Parts

. . . . . .

Announcements

◮ MidtermIII isWednesday4/30inclass(covers§5.1–5.6)◮ Friday5/2isMovieDay!◮ Final(tentative)5/239:15am◮ ProblemSessionsSunday, Thursday, 7pm, SC 310◮ OfficehoursTues, Weds, 2–4pmSC 323

Page 3: Lesson 30: Integration by Parts

. . . . . .

Outline

LastTime: IntegrationbySubstitution

IntegrationbyParts

Whattomake u andwhattomake dv?

OtherdirtytricksDoubleIBP inthecaseofexpsandsines/cosinesLetting dv = dxSubstitute, thenIBPReductionformulas: “simplifying”withIBP

Page 4: Lesson 30: Integration by Parts

. . . . . .

LastTime: IntegrationbySubstitution

Theorem(TheSubstitutionRule)If u = g(x) isadifferentiablefunctionwhoserangeisaninterval Iand f iscontinuouson I, then∫

f(g(x))g′(x)dx =

∫f(u)du

or ∫f(u)

dudx

dx =

∫f(u)du

Fordefiniteintegrals,∫ b

af(g(x))g′(x)dx =

∫ g(b)

g(a)f(u)du.

Page 5: Lesson 30: Integration by Parts

. . . . . .

Outline

LastTime: IntegrationbySubstitution

IntegrationbyParts

Whattomake u andwhattomake dv?

OtherdirtytricksDoubleIBP inthecaseofexpsandsines/cosinesLetting dv = dxSubstitute, thenIBPReductionformulas: “simplifying”withIBP

Page 6: Lesson 30: Integration by Parts

. . . . . .

Introduction

Wecanverifythat ∫ln x dx = x ln x− x

bydifferentiatingtheright-handside:

ddx

(x ln x− x) = x · 1x

+ ln x− 1 = ln x

Howcouldwedothatwithoutknowingitaheadoftime?

Page 7: Lesson 30: Integration by Parts

. . . . . .

Introduction

Wecanverifythat ∫ln x dx = x ln x− x

bydifferentiatingtheright-handside:

ddx

(x ln x− x) = x · 1x

+ ln x− 1 = ln x

Howcouldwedothatwithoutknowingitaheadoftime?

Page 8: Lesson 30: Integration by Parts

. . . . . .

Everyruleofantidifferentiationisaruleofdifferentiationinreverse

Taketheproductrule:

(uv)′(x) = u′(x)v(x) + u(x)v′(x)

Sou(x)v′(x) = (uv)′(x) − v(x)u′(x)

Nowintegrate!

Page 9: Lesson 30: Integration by Parts

. . . . . .

Everyruleofantidifferentiationisaruleofdifferentiationinreverse

Taketheproductrule:

(uv)′(x) = u′(x)v(x) + u(x)v′(x)

Sou(x)v′(x) = (uv)′(x) − v(x)u′(x)

Nowintegrate!

Page 10: Lesson 30: Integration by Parts

. . . . . .

Everyruleofantidifferentiationisaruleofdifferentiationinreverse

Taketheproductrule:

(uv)′(x) = u′(x)v(x) + u(x)v′(x)

Sou(x)v′(x) = (uv)′(x) − v(x)u′(x)

Nowintegrate!

Page 11: Lesson 30: Integration by Parts

. . . . . .

Everyruleofantidifferentiationisaruleofdifferentiationinreverse

Taketheproductrule:

(uv)′(x) = u′(x)v(x) + u(x)v′(x)

Sou(x)v′(x) = (uv)′(x) − v(x)u′(x)

Nowintegrate!

Page 12: Lesson 30: Integration by Parts

. . . . . .

Theorem(IntegrationbyParts)Let u and v bedifferentiablefunctions. Then∫

u(x)v′(x)dx = u(x)v(x) −∫

v(x)u′(x)dx.

Succinctly, ∫udv = uv−

∫v du.

Theorem(IntegrationbyParts, definiteform)

∫ b

audv = uv

∣∣∣∣ba−

∫ b

av du.

Page 13: Lesson 30: Integration by Parts

. . . . . .

Theorem(IntegrationbyParts)Let u and v bedifferentiablefunctions. Then∫

u(x)v′(x)dx = u(x)v(x) −∫

v(x)u′(x)dx.

Succinctly, ∫udv = uv−

∫v du.

Theorem(IntegrationbyParts, definiteform)

∫ b

audv = uv

∣∣∣∣ba−

∫ b

av du.

Page 14: Lesson 30: Integration by Parts

. . . . . .

Outline

LastTime: IntegrationbySubstitution

IntegrationbyParts

Whattomake u andwhattomake dv?

OtherdirtytricksDoubleIBP inthecaseofexpsandsines/cosinesLetting dv = dxSubstitute, thenIBPReductionformulas: “simplifying”withIBP

Page 15: Lesson 30: Integration by Parts

. . . . . .

Example∫xex dx.

SolutionA possiblechoicewouldbe u = ex, dv = x dx. Then du = ex dxand v = 1

2x2. Thus∫

xex dx = 12x

2ex − 12

∫x2ex dx.

Thisdoesn’tmaketheintegralanysimpler, though.

Instead, tryu = x, dv = ex dx. Then du = dx, and v = ex. Thus∫

xex dx = xex −∫

ex dx = xex − ex + C

Themoralofthestoryistochoose u and dv whichmake v dueasierthan udv. Polynomialsareagoodchoicefor u.

Page 16: Lesson 30: Integration by Parts

. . . . . .

Example∫xex dx.

SolutionA possiblechoicewouldbe u = ex, dv = x dx. Then du = ex dxand v = 1

2x2. Thus∫

xex dx = 12x

2ex − 12

∫x2ex dx.

Thisdoesn’tmaketheintegralanysimpler, though. Instead, tryu = x, dv = ex dx. Then du = dx, and v = ex. Thus∫

xex dx = xex −∫

ex dx = xex − ex + C

Themoralofthestoryistochoose u and dv whichmake v dueasierthan udv. Polynomialsareagoodchoicefor u.

Page 17: Lesson 30: Integration by Parts

. . . . . .

Example∫xex dx.

SolutionA possiblechoicewouldbe u = ex, dv = x dx. Then du = ex dxand v = 1

2x2. Thus∫

xex dx = 12x

2ex − 12

∫x2ex dx.

Thisdoesn’tmaketheintegralanysimpler, though. Instead, tryu = x, dv = ex dx. Then du = dx, and v = ex. Thus∫

xex dx = xex −∫

ex dx = xex − ex + C

Themoralofthestoryistochoose u and dv whichmake v dueasierthan udv. Polynomialsareagoodchoicefor u.

Page 18: Lesson 30: Integration by Parts

. . . . . .

Example

Find∫

x2ex dx.

SolutionLet u = x2, du = 2x dx. Then∫

x2ex dx = u2ex − 2∫

xex dx

andwedidthelastpartalready! So∫x2ex dx = x2ex − 2xex + 2ex + C

Page 19: Lesson 30: Integration by Parts

. . . . . .

Example

Find∫

x2ex dx.

SolutionLet u = x2, du = 2x dx. Then∫

x2ex dx = u2ex − 2∫

xex dx

andwedidthelastpartalready! So∫x2ex dx = x2ex − 2xex + 2ex + C

Page 20: Lesson 30: Integration by Parts

. . . . . .

Example

Find∫

x ln x dx.

SolutionLet u = ln x, dv = x dx. Then∫

x ln x dx =12x2 ln x− 1

2

∫x2 · 1

xdx

=12x2 ln x− 1

2

∫x dx =

12x2 ln x− 1

4x2 + C

Page 21: Lesson 30: Integration by Parts

. . . . . .

Example

Find∫

x ln x dx.

SolutionLet u = ln x, dv = x dx. Then∫

x ln x dx =12x2 ln x− 1

2

∫x2 · 1

xdx

=12x2 ln x− 1

2

∫x dx =

12x2 ln x− 1

4x2 + C

Page 22: Lesson 30: Integration by Parts

. . . . . .

Worksheet1–7

Page 23: Lesson 30: Integration by Parts

. . . . . .

Outline

LastTime: IntegrationbySubstitution

IntegrationbyParts

Whattomake u andwhattomake dv?

OtherdirtytricksDoubleIBP inthecaseofexpsandsines/cosinesLetting dv = dxSubstitute, thenIBPReductionformulas: “simplifying”withIBP

Page 24: Lesson 30: Integration by Parts

. . . . . .

DoubleIBP inthecaseofexpsandsines/cosinesWorksheet#8

Example

Find∫

e−2x sin(3x)dx

SolutionLet u = sin(3x), dv = e−2x dx. Then du = 3 cos(3x)dx and

v = −12e−2x. So

I = −12e

−2x sin(3x) + 32

∫e−2x cos(3x)dx

Page 25: Lesson 30: Integration by Parts

. . . . . .

DoubleIBP inthecaseofexpsandsines/cosinesWorksheet#8

Example

Find∫

e−2x sin(3x)dx

SolutionLet u = sin(3x), dv = e−2x dx. Then du = 3 cos(3x)dx and

v = −12e−2x. So

I = −12e

−2x sin(3x) + 32

∫e−2x cos(3x)dx

Page 26: Lesson 30: Integration by Parts

. . . . . .

Todothesecondintegral, let u = cos(3x), dv = e−2x dx. Then

I = −12e

−2x sin(3x) + 32

{−1

2e−2x cos(3x) − 3

2

∫e−2x sin(3x)dx

}= −1

2e−2x sin(3x) − 3

4e−2x cos(3x) − 9

4 I

Wearebackwherewestarted, butinagoodway.

134 I = −1

2e−2x sin(3x) − 3

4e−2x cos(3x)

=⇒ I = − 213e

−2x sin(3x) − 313e

−2x cos(3x)

Danger! Don’tundoyourwork. Thechoice u = e−2x,dv = cos(3x)dx willcanceleverythingontheright-handsidebutI.

Page 27: Lesson 30: Integration by Parts

. . . . . .

Todothesecondintegral, let u = cos(3x), dv = e−2x dx. Then

I = −12e

−2x sin(3x) + 32

{−1

2e−2x cos(3x) − 3

2

∫e−2x sin(3x)dx

}= −1

2e−2x sin(3x) − 3

4e−2x cos(3x) − 9

4 I

Wearebackwherewestarted, butinagoodway.

134 I = −1

2e−2x sin(3x) − 3

4e−2x cos(3x)

=⇒ I = − 213e

−2x sin(3x) − 313e

−2x cos(3x)

Danger! Don’tundoyourwork. Thechoice u = e−2x,dv = cos(3x)dx willcanceleverythingontheright-handsidebutI.

Page 28: Lesson 30: Integration by Parts

. . . . . .

Letting dv = dxWorksheet#9–10

Example

Find∫

arctan x dx

SolutionLet u = arctan x, dv = dx. So du =

11 + x2

dx and v = x. Thus∫arctan x dx = x arctan x−

∫x

1 + x2dx

Nowwecanintegratethelastoneby substituting u = 1 + x2,du = 2x dx. Weget∫

arctan x dx = arctan x− 12 ln(1 + x2) + C

Page 29: Lesson 30: Integration by Parts

. . . . . .

Letting dv = dxWorksheet#9–10

Example

Find∫

arctan x dx

SolutionLet u = arctan x, dv = dx. So du =

11 + x2

dx and v = x. Thus∫arctan x dx = x arctan x−

∫x

1 + x2dx

Nowwecanintegratethelastoneby substituting u = 1 + x2,du = 2x dx. Weget∫

arctan x dx = arctan x− 12 ln(1 + x2) + C

Page 30: Lesson 30: Integration by Parts

. . . . . .

Integralofthelogarithm

Example

Find∫

ln x dx.

SolutionLet u = ln x, dv = dx. Then∫

ln x dx = x ln x− x + C

aspredicted.

Page 31: Lesson 30: Integration by Parts

. . . . . .

Integralofthelogarithm

Example

Find∫

ln x dx.

SolutionLet u = ln x, dv = dx. Then∫

ln x dx = x ln x− x + C

aspredicted.

Page 32: Lesson 30: Integration by Parts

. . . . . .

Onemore

Example ∫arcsin x dx =

√1− x2 + x arcsin x + C

Page 33: Lesson 30: Integration by Parts

. . . . . .

Substitute, thenIBP

Example

Find∫

z(ln z)2 dz

SolutionLet u = ln z, so z = eu and dz = eu du. Thus∫

z(ln z)2 dz =

∫e2uu2 du

Nowintegratebyparts.

Page 34: Lesson 30: Integration by Parts

. . . . . .

Substitute, thenIBP

Example

Find∫

z(ln z)2 dz

SolutionLet u = ln z, so z = eu and dz = eu du. Thus∫

z(ln z)2 dz =

∫e2uu2 du

Nowintegratebyparts.

Page 35: Lesson 30: Integration by Parts

. . . . . .

Substitute, thenIBP

Example

Find∫

z(ln z)2 dz

SolutionLet u = ln z, so z = eu and dz = eu du. Thus∫

z(ln z)2 dz =

∫e2uu2 du

Nowintegratebyparts.

Page 36: Lesson 30: Integration by Parts

. . . . . .

Worksheet#11–13

Page 37: Lesson 30: Integration by Parts

. . . . . .

Reductionformulas: “simplifying”withIBP

Example

Find∫

cosn x dx.

SolutionLet u = cosn−1 x, dv = cos x dx. Then v = sin x anddu = (n− 1) cosn−2(x)(− sin x)dx Weget∫

cosn x dx = cosn−1 x sin x +

∫cosn−1 x sin2 x dx

Nowwrite sin2 x = 1− cos2 x, expand, andcollectthe∫cosn x dx ontheleft. Youget

∫cosn x dx =

1ncosn−1 x sin x +

n− 1n

∫cosn−2 x dx

Page 38: Lesson 30: Integration by Parts

. . . . . .

Reductionformulas: “simplifying”withIBP

Example

Find∫

cosn x dx.

SolutionLet u = cosn−1 x, dv = cos x dx. Then v = sin x anddu = (n− 1) cosn−2(x)(− sin x)dx Weget∫

cosn x dx = cosn−1 x sin x +

∫cosn−1 x sin2 x dx

Nowwrite sin2 x = 1− cos2 x, expand, andcollectthe∫cosn x dx ontheleft. Youget

∫cosn x dx =

1ncosn−1 x sin x +

n− 1n

∫cosn−2 x dx