Lesson 3: The Concept of Limit

78
. . . . . . Section 1.3 The Concept of Limit V63.0121.006/016, Calculus I January 26, 2009 Announcements I Blackboard sites are up I Office Hours: MW 1:30–2:30, R 9–10 (CIWW 726) I WebAssignments not due until Feb 2 (but there are several)

description

The limit is how we describe functions near points.

Transcript of Lesson 3: The Concept of Limit

Page 1: Lesson 3: The Concept of Limit

. . . . . .

Section1.3TheConceptofLimit

V63.0121.006/016, CalculusI

January26, 2009

Announcements

I BlackboardsitesareupI OfficeHours: MW 1:30–2:30, R 9–10(CIWW 726)I WebAssignmentsnotdueuntilFeb2(butthereareseveral)

Page 2: Lesson 3: The Concept of Limit

Limit

. . . . . .

Page 3: Lesson 3: The Concept of Limit

. . . . . .

Zeno’sParadox

Thatwhichisinlocomotionmustarriveatthehalf-waystagebeforeitarrivesatthegoal.

(Aristotle Physics VI:9,239b10)

Page 4: Lesson 3: The Concept of Limit

. . . . . .

Outline

Heuristics

Errorsandtolerances

Examples

Pathologies

PreciseDefinitionofaLimit

Page 5: Lesson 3: The Concept of Limit

. . . . . .

HeuristicDefinitionofaLimit

DefinitionWewrite

limx→a

f(x) = L

andsay

“thelimitof f(x), as x approaches a, equals L”

ifwecanmakethevaluesof f(x) arbitrarilycloseto L (asclosetoL aswelike)bytaking x tobesufficientlycloseto a (oneithersideof a)butnotequalto a.

Page 6: Lesson 3: The Concept of Limit

. . . . . .

Outline

Heuristics

Errorsandtolerances

Examples

Pathologies

PreciseDefinitionofaLimit

Page 7: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

A gamebetweentwoplayerstodecideifalimit limx→a

f(x) exists.

Step1 Player1: Choose L tobethelimit.

Step2 Player2: Proposean“error”levelaround L.

Step3 Player1: Choosea“tolerance”levelaround a sothatx-pointswithinthattolerancelevelof a aretakentoy-valueswithintheerrorlevelof L, withthepossibleexceptionof a itself.

Step4 GobacktoStep2untilPlayer1cannotmove.

IfPlayer1canalwaysfindatolerancelevel, limx→a

f(x) = L.

Page 8: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 9: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 10: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 11: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig

.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 12: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 13: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig

.Stilltoobig

.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 14: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 15: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig

.Thislooksgood

.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 16: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood

.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 17: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 18: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

.

.Thistoleranceistoobig.Stilltoobig.Thislooksgood.Sodoesthis

.a

.L

I Tobelegit, thepartofthegraphinsidetheblue(vertical)stripmustalsobeinsidethegreen(horizontal)strip.

I IfPlayer2shrinkstheerror, Player1canstillwin.

Page 19: Lesson 3: The Concept of Limit

. . . . . .

Outline

Heuristics

Errorsandtolerances

Examples

Pathologies

PreciseDefinitionofaLimit

Page 20: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.I Iftheerrorlevelis 0.01, I needtoguaranteethat

−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 21: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.

I Iftheerrorlevelis 0.01, I needtoguaranteethat−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.

I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 22: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.I Iftheerrorlevelis 0.01, I needtoguaranteethat

−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.

I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 23: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.I Iftheerrorlevelis 0.01, I needtoguaranteethat

−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.

I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 24: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.I Iftheerrorlevelis 0.01, I needtoguaranteethat

−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 25: Lesson 3: The Concept of Limit

. . . . . .

ExampleFind lim

x→0x2 ifitexists.

Solution

I I claimthelimitiszero.I Iftheerrorlevelis 0.01, I needtoguaranteethat

−0.01 < x2 < 0.01 forall x sufficientlyclosetozero.I If −0.1 < x < 0.1, then 0 ≤ x2 < 0.01, soI winthatround.I Whatshouldthetolerancebeiftheerroris 0.0001?

Bysettingtoleranceequaltothesquarerootoftheerror, wecanguaranteetobewithinanyerror.

Page 26: Lesson 3: The Concept of Limit

. . . . . .

Example

Find limx→0

|x|x

ifitexists.

Solution

Thefunctioncanalsobewrittenas

|x|x

=

{1 if x > 0;

−1 if x < 0

Whatwouldbethelimit?Theerror-tolerancegamefails, but

limx→0+

f(x) = 1 limx→0−

f(x) = −1

Page 27: Lesson 3: The Concept of Limit

. . . . . .

Example

Find limx→0

|x|x

ifitexists.

SolutionThefunctioncanalsobewrittenas

|x|x

=

{1 if x > 0;

−1 if x < 0

Whatwouldbethelimit?

Theerror-tolerancegamefails, but

limx→0+

f(x) = 1 limx→0−

f(x) = −1

Page 28: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 29: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 30: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 31: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 32: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 33: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 34: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 35: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 36: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is notinside green

.Part of graph in-side blue is notinside green

I Thesearetheonlygoodchoices; thelimitdoesnotexist.

Page 37: Lesson 3: The Concept of Limit

. . . . . .

One-sidedlimits

DefinitionWewrite

limx→a+

f(x) = L

andsay

“thelimitof f(x), as x approaches a fromthe right, equals L”

ifwecanmakethevaluesof f(x) arbitrarilycloseto L (asclosetoL aswelike)bytaking x tobesufficientlycloseto a and greaterthan a.

Page 38: Lesson 3: The Concept of Limit

. . . . . .

One-sidedlimits

DefinitionWewrite

limx→a−

f(x) = L

andsay

“thelimitof f(x), as x approaches a fromthe left, equals L”

ifwecanmakethevaluesof f(x) arbitrarilycloseto L (asclosetoL aswelike)bytaking x tobesufficientlycloseto a and less thana.

Page 39: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 40: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 41: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 42: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 43: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 44: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 45: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 46: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 47: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 48: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

..−1

..1 .

.

.Part of graph in-side blue is in-side green

.Part of graph in-side blue is in-side green

I So limx→0+

f(x) = 1 and limx→0−

f(x) = −1

Page 49: Lesson 3: The Concept of Limit

. . . . . .

Example

Find limx→0

|x|x

ifitexists.

SolutionThefunctioncanalsobewrittenas

|x|x

=

{1 if x > 0;

−1 if x < 0

Whatwouldbethelimit?Theerror-tolerancegamefails, but

limx→0+

f(x) = 1 limx→0−

f(x) = −1

Page 50: Lesson 3: The Concept of Limit

. . . . . .

Example

Find limx→0+

1xifitexists.

SolutionThelimitdoesnotexistbecausethefunctionisunboundednear0. Nextweekwewillunderstandthestatementthat

limx→0+

1x= +∞

Page 51: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 52: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 53: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 54: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good

.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 55: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 56: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good

.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 57: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame

. .x

.y

.0

..L?

.The graph escapes thegreen, so no good.Evenworse!

.The limit does not existbecause the function isunbounded near 0

Page 58: Lesson 3: The Concept of Limit

. . . . . .

Example

Find limx→0+

1xifitexists.

SolutionThelimitdoesnotexistbecausethefunctionisunboundednear0. Nextweekwewillunderstandthestatementthat

limx→0+

1x= +∞

Page 59: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =

1kforanyinteger k

I f(x) = 1 when x =

24k+ 1

foranyinteger k

I f(x) = −1 when x =

24k− 1

foranyinteger k

Page 60: Lesson 3: The Concept of Limit

. . . . . .

Functionvalues

x π/x sin(π/x)1 π 01/2 2π 01/k kπ 02 π/2 12/5 5π/2 12/9 9π/2 12/13 13π/2 12/3 3π/2 −12/7 7π/2 −12/11 11π/2 −1

.

..π/2

..π

..3π/2

. .0

Page 61: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =

1kforanyinteger k

I f(x) = 1 when x =

24k+ 1

foranyinteger k

I f(x) = −1 when x =

24k− 1

foranyinteger k

Page 62: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =

1kforanyinteger k

I f(x) = 1 when x =

24k+ 1

foranyinteger k

I f(x) = −1 when x =

24k− 1

foranyinteger k

Page 63: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =1kforanyinteger k

I f(x) = 1 when x =

24k+ 1

foranyinteger k

I f(x) = −1 when x =

24k− 1

foranyinteger k

Page 64: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =1kforanyinteger k

I f(x) = 1 when x =2

4k+ 1foranyinteger k

I f(x) = −1 when x =

24k− 1

foranyinteger k

Page 65: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuff

ExampleFind lim

x→0sin

(πx

)ifitexists.

I f(x) = 0 when x =1kforanyinteger k

I f(x) = 1 when x =2

4k+ 1foranyinteger k

I f(x) = −1 when x =2

4k− 1foranyinteger k

Page 66: Lesson 3: The Concept of Limit

. . . . . .

Weird, wildstuffcontinued

Hereisagraphofthefunction:

. .x

.y

..−1

..1

Thereareinfinitelymanypointsarbitrarilyclosetozerowheref(x) is 0, or 1, or −1. Sothelimitcannotexist.

Page 67: Lesson 3: The Concept of Limit

. . . . . .

Outline

Heuristics

Errorsandtolerances

Examples

Pathologies

PreciseDefinitionofaLimit

Page 68: Lesson 3: The Concept of Limit

. . . . . .

Whatcouldgowrong?SummaryofLimitPathologies

Howcouldafunctionfailtohavealimit? Somepossibilities:I left-andright-handlimitsexistbutarenotequalI Thefunctionisunboundednear aI Oscillationwithincreasinglyhighfrequencynear a

Page 69: Lesson 3: The Concept of Limit

. . . . . .

MeettheMathematician: AugustinLouisCauchy

I French, 1789–1857I RoyalistandCatholicI madecontributionsingeometry, calculus,complexanalysis,numbertheory

I createdthedefinitionoflimitweusetodaybutdidn’tunderstandit

Page 70: Lesson 3: The Concept of Limit

. . . . . .

Outline

Heuristics

Errorsandtolerances

Examples

Pathologies

PreciseDefinitionofaLimit

Page 71: Lesson 3: The Concept of Limit

. . . . . .

PreciseDefinitionofaLimitNo, thisisnotgoingtobeonthetest

Let f beafunctiondefinedonansomeopenintervalthatcontainsthenumber a, exceptpossiblyat a itself. Thenwesaythatthe limitof f(x) as x approaches a is L, andwewrite

limx→a

f(x) = L,

ifforevery ε > 0 thereisacorresponding δ > 0 suchthat

if 0 < |x− a| < δ, then |f(x)− L| < ε.

Page 72: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 73: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 74: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 75: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 76: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 77: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L

Page 78: Lesson 3: The Concept of Limit

. . . . . .

Theerror-tolerancegame= ε, δ

.

.L+ ε

.L− ε

.a− δ .a+ δ

.This δ istoobig

.a− δ.a+ δ

.This δ looksgood

.a− δ.a+ δ

.Sodoesthis δ

.a

.L