Lesson 23: Areas And Distances (Section 4 version)

50
. . . . . . Section 5.1 Areas and Distances V63.0121, Calculus I April 14, 2009 Announcements I Moving to 624 today I Quiz 5 Thursday on §§4.1–4.4

description

We trace the computation of area through the centuries. The process known known as Riemann Sums has applications to not just area but many fields of science.

Transcript of Lesson 23: Areas And Distances (Section 4 version)

Page 1: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Section5.1AreasandDistances

V63.0121, CalculusI

April14, 2009

Announcements

I Movingto624todayI Quiz5Thursdayon§§4.1–4.4

Page 2: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

Page 3: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

Page 4: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

Page 5: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Meetthemathematician: Archimedes

I 287BC –212BC (afterEuclid)

I GeometerI Weaponsengineer

Page 6: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

.

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A =

1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 7: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

.

.1

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1

+ 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 8: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

.

.1.18 .18

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 9: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 10: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

.

.1.18 .18

.164 .164

.164 .164

Archimedesfoundareasofasequenceoftrianglesinscribedinaparabola.

A = 1 + 2 · 18

+ 4 · 164

+ · · ·

= 1 +14

+116

+ · · · + 14n

+ · · ·

Page 11: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

Page 12: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

Page 13: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4

→ 13/4

=43

as n → ∞.

Page 14: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Wewouldthenneedtoknowthevalueoftheseries

1 +14

+116

+ · · · + 14n

+ · · ·

Butforanynumber r andanypositiveinteger n,

(1− r)(1 + r + · · · + rn) = 1− rn+1

So

1 + r + · · · + rn =1− rn+1

1− r

Therefore

1 +14

+116

+ · · · + 14n

=1− (1/4)n+1

1− 1/4→ 1

3/4=

43

as n → ∞.

Page 15: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

Page 16: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri

I Italian,1598–1647

I Revisitedtheareaproblemwithadifferentperspective

Page 17: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 18: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.12

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 19: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.13

.

.23

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =

127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 20: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.13

.

.23

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 21: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.14

.

.24

.

.34

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =

164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 22: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.14

.

.24

.

.34

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 23: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.15

.

.25

.

.35

.

.45

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =

1125

+4

125+

9125

+16125

=30125

Ln =?

Page 24: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1

.

.15

.

.25

.

.35

.

.45

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

16125

=30125

Ln =?

Page 25: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethod

.

.y = x2

..0

..1.

.

Divideuptheintervalintopiecesandmeasuretheareaoftheinscribedrectangles:

L2 =18

L3 =127

+427

=527

L4 =164

+464

+964

=1464

L5 =1

125+

4125

+9

125+

16125

=30125

Ln =?

Page 26: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 27: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 28: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 29: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3

→ 13

as n → ∞.

Page 30: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Whatis Ln?Dividetheinterval [0, 1] into n pieces. Theneachhaswidth

1n.

Therectangleoverthe ithintervalandundertheparabolahasarea

1n·(i− 1n

)2

=(i− 1)2

n3.

So

Ln =1n3

+22

n3+ · · · + (n− 1)2

n3=

1 + 22 + 32 + · · · + (n− 1)2

n3

TheArabsknewthat

1 + 22 + 32 + · · · + (n− 1)2 =n(n− 1)(2n− 1)

6

So

Ln =n(n− 1)(2n− 1)

6n3→ 1

3as n → ∞.

Page 31: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)

=1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n4

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 32: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n4

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 33: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n4

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 34: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n4

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2

So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 35: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodfordifferentfunctions

Trythesametrickwith f(x) = x3. Wehave

Ln =1n· f

(1n

)+

1n· f

(2n

)+ · · · + 1

n· f

(n− 1n

)=

1n· 1n3

+1n· 2

3

n3+ · · · + 1

n· (n− 1)3

n3

=1 + 23 + 33 + · · · + (n− 1)3

n4

Theformulaoutofthehatis

1 + 23 + 33 + · · · + (n− 1)3 =[12n(n− 1)

]2So

Ln =n2(n− 1)2

4n4→ 1

4as n → ∞.

Page 36: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.

Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

Page 37: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodwithdifferentheights

.

Rn =1n· 1

3

n3+

1n· 2

3

n3+ · · · + 1

n· n

3

n3

=13 + 23 + 33 + · · · + n3

n4

=1n4

[12n(n + 1)

]2=

n2(n + 1)2

4n4→ 1

4

as n → ∞.Soeventhoughtherectanglesoverlap, westillgetthesameanswer.

Page 38: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

Page 39: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Cavalieri’smethodingeneralLet f beapositivefunctiondefinedontheinterval [a,b]. Wewanttofindtheareabetween x = a, x = b, y = 0, and y = f(x).Foreachpositiveinteger n, divideuptheintervalinto n pieces.

Then ∆x =b− an

. Foreach i between 1 and n, let xi bethe nth

stepbetween a and b. So

..a .b. . . . . . ..x0 .x1 .x2 .xi.xn−1.xn

x0 = a

x1 = x0 + ∆x = a +b− an

x2 = x1 + ∆x = a + 2 · b− an

· · · · · ·

xi = a + i · b− an

· · · · · ·

xn = a + n · b− an

= b

Page 40: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

Page 41: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

FormingRiemannsums

Wehavemanychoicesofhowtoapproximatethearea:

Ln = f(x0)∆x + f(x1)∆x + · · · + f(xn−1)∆x

Rn = f(x1)∆x + f(x2)∆x + · · · + f(xn)∆x

Mn = f(x0 + x1

2

)∆x + f

(x1 + x2

2

)∆x + · · · + f

(xn−1 + xn

2

)∆x

Ingeneral, choose ci tobeapointinthe ithinterval [xi−1, xi].Formthe Riemannsum

Sn = f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x

=n∑

i=1

f(ci)∆x

Page 42: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

TheoremoftheDay

TheoremIf f isacontinuousfunctionon [a,b] orhasfinitelymanyjumpdiscontinuities, then

limn→∞

Sn = limn→∞

{f(c1)∆x + f(c2)∆x + · · · + f(cn)∆x}

existsandisthesamevaluenomatterwhatchoiceof ci wemade.

Page 43: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

Page 44: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Distances

Justlike area = length×width, wehave

distance = rate× time.

SohereisanotheruseforRiemannsums.

Page 45: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

ExampleA sailingshipiscruisingbackandforthalongachannel(inastraightline). Atnoontheship’spositionandvelocityarerecorded, butshortlythereafterastormblowsinandpositionisimpossibletomeasure. Thevelocitycontinuestoberecordedatthirty-minuteintervals.

Time 12:00 12:30 1:00 1:30 2:00Speed(knots) 4 8 12 6 4Direction E E E E W

Time 2:30 3:00 3:30 4:00Speed 3 3 5 9Direction W E E E

Estimatetheship’spositionat4:00pm.

Page 46: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

SolutionWeestimatethatthespeedof4knots(nauticalmilesperhour)ismaintainedfrom12:00until12:30. Sooverthistimeintervaltheshiptravels (

4 nmihr

) (12hr

)= 2 nmi

Wecancontinueforeachadditionalhalfhourandget

distance = 4× 1/2 + 8× 1/2 + 12× 1/2

+ 6× 1/2− 4× 1/2− 3× 1/2 + 3× 1/2 + 5× 1/2

= 15.5

Sotheshipis 15.5 nmi eastofitsoriginalposition.

Page 47: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Analysis

I Thismethodofmeasuringpositionbyrecordingvelocityisknownas deadreckoning.

I Ifwehadvelocityestimatesatfinerintervals, we’dgetbetterestimates.

I Ifwehadvelocityateveryinstant, alimitwouldtellusourexactpositionrelativetothelasttimewemeasuredit.

Page 48: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Outline

Archimedes

Cavalieri

GeneralizingCavalieri’smethod

Distances

Otherapplications

Page 49: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

OtherusesofRiemannsums

Anythingwithaproduct!I Area, volumeI Anythingwithadensity: Population, massI Anythingwitha“speed:” distance, throughput, powerI ConsumersurplusI Expectedvalueofarandomvariable

Page 50: Lesson 23:   Areas And Distances (Section 4 version)

. . . . . .

Summary

I Riemannsumscanbeusedtoestimateareas, distance, andotherquantities

I ThelimitofRiemannsumscangettheexactvalueI Comingup: givingthislimitanameandworkingwithit.