Lesson 16: Inverse Trigonometric Functions

76
Section 3.5 Inverse Trigonometric Functions V63.0121.002.2010Su, Calculus I New York University June 7, 2010 Announcements I Exams not graded yet I Written HW due tomorrow I Quiz 3 on Thursday covering 3.3, 3.4, 3.5, 3.7

description

 

Transcript of Lesson 16: Inverse Trigonometric Functions

Page 1: Lesson 16: Inverse Trigonometric Functions

Section 3.5Inverse Trigonometric

Functions

V63.0121.002.2010Su, Calculus I

New York University

June 7, 2010

Announcements

I Exams not graded yet

I Written HW due tomorrow

I Quiz 3 on Thursday covering 3.3, 3.4, 3.5, 3.7

Page 2: Lesson 16: Inverse Trigonometric Functions

Announcements

I Exams not graded yet

I Written HW due tomorrow

I Quiz 3 on Thursday covering3.3, 3.4, 3.5, 3.7

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 2 / 30

Page 3: Lesson 16: Inverse Trigonometric Functions

Objectives

I Know the definitions,domains, ranges, and otherproperties of the inversetrignometric functions:arcsin, arccos, arctan,arcsec, arccsc, arccot.

I Know the derivatives of theinverse trignometricfunctions.

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 3 / 30

Page 4: Lesson 16: Inverse Trigonometric Functions

What is an inverse function?

Definition

Let f be a function with domain D and range E . The inverse of f is thefunction f −1 defined by:

f −1(b) = a,

where a is chosen so that f (a) = b.

Sof −1(f (x)) = x , f (f −1(x)) = x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 4 / 30

Page 5: Lesson 16: Inverse Trigonometric Functions

What is an inverse function?

Definition

Let f be a function with domain D and range E . The inverse of f is thefunction f −1 defined by:

f −1(b) = a,

where a is chosen so that f (a) = b.

Sof −1(f (x)) = x , f (f −1(x)) = x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 4 / 30

Page 6: Lesson 16: Inverse Trigonometric Functions

What functions are invertible?

In order for f −1 to be a function, there must be only one a in Dcorresponding to each b in E .

I Such a function is called one-to-one

I The graph of such a function passes the horizontal line test: anyhorizontal line intersects the graph in exactly one point if at all.

I If f is continuous, then f −1 is continuous.

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 5 / 30

Page 7: Lesson 16: Inverse Trigonometric Functions

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 6 / 30

Page 8: Lesson 16: Inverse Trigonometric Functions

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

x

y

sin−π

2

π

2

y = xarcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30

Page 9: Lesson 16: Inverse Trigonometric Functions

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

x

y

sin−π

2

π

2

y = xarcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30

Page 10: Lesson 16: Inverse Trigonometric Functions

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

x

y

sin−π

2

π

2

y = x

arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30

Page 11: Lesson 16: Inverse Trigonometric Functions

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

x

y

sin−π

2

π

2

y = x

arcsin

I The domain of arcsin is [−1, 1]

I The range of arcsin is[−π

2,π

2

]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 7 / 30

Page 12: Lesson 16: Inverse Trigonometric Functions

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

x

y

cos

0 π

y = x

arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30

Page 13: Lesson 16: Inverse Trigonometric Functions

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

x

y

cos

0 π

y = x

arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30

Page 14: Lesson 16: Inverse Trigonometric Functions

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

x

y

cos

0 π

y = x

arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30

Page 15: Lesson 16: Inverse Trigonometric Functions

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

x

y

cos

0 π

y = x

arccos

I The domain of arccos is [−1, 1]

I The range of arccos is [0, π]

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 8 / 30

Page 16: Lesson 16: Inverse Trigonometric Functions

arctan

Arctan is the inverse of the tangent function after restriction to [−π/2, π/2].

x

y

tan

−3π

2−π

2

π

23π

2

y = x

arctan

−π2

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30

Page 17: Lesson 16: Inverse Trigonometric Functions

arctan

Arctan is the inverse of the tangent function after restriction to [−π/2, π/2].

x

y

tan

−3π

2−π

2

π

23π

2

y = x

arctan

−π2

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30

Page 18: Lesson 16: Inverse Trigonometric Functions

arctan

Arctan is the inverse of the tangent function after restriction to [−π/2, π/2].

x

y

tan

−3π

2−π

2

π

23π

2

y = x

arctan

−π2

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30

Page 19: Lesson 16: Inverse Trigonometric Functions

arctan

Arctan is the inverse of the tangent function after restriction to [−π/2, π/2].

x

y

tan

−3π

2−π

2

π

23π

2

y = x

arctan

−π2

π

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 9 / 30

Page 20: Lesson 16: Inverse Trigonometric Functions

arcsec

Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].

x

y

sec

−3π

2−π

2

π

23π

2

y = x

π

2

2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30

Page 21: Lesson 16: Inverse Trigonometric Functions

arcsec

Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].

x

y

sec

−3π

2−π

2

π

23π

2

y = x

π

2

2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30

Page 22: Lesson 16: Inverse Trigonometric Functions

arcsec

Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].

x

y

sec

−3π

2−π

2

π

23π

2

y = x

π

2

2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30

Page 23: Lesson 16: Inverse Trigonometric Functions

arcsec

Arcsecant is the inverse of secant after restriction to [0, π/2) ∪ (π, 3π/2].

x

y

sec

−3π

2−π

2

π

23π

2

y = x

π

2

2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,π

2

)∪(π

2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π

2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 10 / 30

Page 24: Lesson 16: Inverse Trigonometric Functions

Values of Trigonometric Functions

x 0π

6

π

4

π

3

π

2

sin x 01

2

√2

2

√3

21

cos x 1

√3

2

√2

2

1

20

tan x 01√3

1√

3 undef

cot x undef√

3 11√3

0

sec x 12√3

2√2

2 undef

csc x undef 22√2

2√3

1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 11 / 30

Page 25: Lesson 16: Inverse Trigonometric Functions

Check: Values of inverse trigonometric functions

Example

Find

I arcsin(1/2)

I arctan(−1)

I arccos

(−√

2

2

)

Solution

6

I −π4

I3π

4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 12 / 30

Page 26: Lesson 16: Inverse Trigonometric Functions

Check: Values of inverse trigonometric functions

Example

Find

I arcsin(1/2)

I arctan(−1)

I arccos

(−√

2

2

)

Solution

6

I −π4

I3π

4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 12 / 30

Page 27: Lesson 16: Inverse Trigonometric Functions

What is arctan(−1)?

3π/4

−π/4

sin(3π/4) =

√2

2

cos(3π/4) = −√

2

2sin(π/4) = −√

2

2

cos(π/4) =

√2

2

I Yes, tan

(3π

4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π4

, and

this is in the right range.

I So arctan(−1) = −π4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30

Page 28: Lesson 16: Inverse Trigonometric Functions

What is arctan(−1)?

3π/4

−π/4

sin(3π/4) =

√2

2

cos(3π/4) = −√

2

2

sin(π/4) = −√

2

2

cos(π/4) =

√2

2

I Yes, tan

(3π

4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π4

, and

this is in the right range.

I So arctan(−1) = −π4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30

Page 29: Lesson 16: Inverse Trigonometric Functions

What is arctan(−1)?

3π/4

−π/4

sin(3π/4) =

√2

2

cos(3π/4) = −√

2

2

sin(π/4) = −√

2

2

cos(π/4) =

√2

2

I Yes, tan

(3π

4

)= −1

I But, the range of arctan is(−π

2,π

2

)

I Another angle whose

tangent is −1 is −π4

, and

this is in the right range.

I So arctan(−1) = −π4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30

Page 30: Lesson 16: Inverse Trigonometric Functions

What is arctan(−1)?

3π/4

−π/4

sin(3π/4) =

√2

2

cos(3π/4) = −√

2

2

sin(π/4) = −√

2

2

cos(π/4) =

√2

2

I Yes, tan

(3π

4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π4

, and

this is in the right range.

I So arctan(−1) = −π4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30

Page 31: Lesson 16: Inverse Trigonometric Functions

What is arctan(−1)?

3π/4

−π/4

sin(3π/4) =

√2

2

cos(3π/4) = −√

2

2

sin(π/4) = −√

2

2

cos(π/4) =

√2

2

I Yes, tan

(3π

4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π4

, and

this is in the right range.

I So arctan(−1) = −π4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 13 / 30

Page 32: Lesson 16: Inverse Trigonometric Functions

Check: Values of inverse trigonometric functions

Example

Find

I arcsin(1/2)

I arctan(−1)

I arccos

(−√

2

2

)

Solution

6

I −π4

I3π

4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 14 / 30

Page 33: Lesson 16: Inverse Trigonometric Functions

Check: Values of inverse trigonometric functions

Example

Find

I arcsin(1/2)

I arctan(−1)

I arccos

(−√

2

2

)

Solution

6

I −π4

I3π

4

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 14 / 30

Page 34: Lesson 16: Inverse Trigonometric Functions

Caution: Notational ambiguity

sin2 x = (sin x)2 sin−1 x = (sin x)−1

I sinn x means the nth power of sin x , except when n = −1!

I The book uses sin−1 x for the inverse of sin x , and never for (sin x)−1.

I I use csc x for1

sin xand arcsin x for the inverse of sin x .

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 15 / 30

Page 35: Lesson 16: Inverse Trigonometric Functions

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 16 / 30

Page 36: Lesson 16: Inverse Trigonometric Functions

The Inverse Function Theorem

Theorem (The Inverse Function Theorem)

Let f be differentiable at a, and f ′(a) 6= 0. Then f −1 is defined in an openinterval containing b = f (a), and

(f −1)′(b) =1

f ′(f −1(b))

Upshot: Many times the derivative of f −1(x) can be found by implicitdifferentiation and the derivative of f :

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 17 / 30

Page 37: Lesson 16: Inverse Trigonometric Functions

The Inverse Function Theorem

Theorem (The Inverse Function Theorem)

Let f be differentiable at a, and f ′(a) 6= 0. Then f −1 is defined in an openinterval containing b = f (a), and

(f −1)′(b) =1

f ′(f −1(b))

Upshot: Many times the derivative of f −1(x) can be found by implicitdifferentiation and the derivative of f :

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 17 / 30

Page 38: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 39: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 40: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 41: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x

√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 42: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 43: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 44: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsin

Let y = arcsin x , so x = sin y . Then

cos ydy

dx= 1 =⇒ dy

dx=

1

cos y=

1

cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√

1− x2

So

d

dxarcsin(x) =

1√1− x2

1x

y = arcsin x√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 18 / 30

Page 45: Lesson 16: Inverse Trigonometric Functions

Graphing arcsin and its derivative

I The domain of f is [−1, 1],but the domain of f ′ is(−1, 1)

I limx→1−

f ′(x) = +∞

I limx→−1+

f ′(x) = +∞ |−1

|1

arcsin

1√1− x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 19 / 30

Page 46: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arccos

Let y = arccos x , so x = cos y . Then

− sin ydy

dx= 1 =⇒ dy

dx=

1

− sin y=

1

− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√

1− x2

So

d

dxarccos(x) = − 1√

1− x2

1 √1− x2

x

y = arccos x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 20 / 30

Page 47: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arccos

Let y = arccos x , so x = cos y . Then

− sin ydy

dx= 1 =⇒ dy

dx=

1

− sin y=

1

− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√

1− x2

So

d

dxarccos(x) = − 1√

1− x2

1 √1− x2

x

y = arccos x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 20 / 30

Page 48: Lesson 16: Inverse Trigonometric Functions

Graphing arcsin and arccos

|−1

|1

arcsin

arccos

Note

cos θ = sin(π

2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 21 / 30

Page 49: Lesson 16: Inverse Trigonometric Functions

Graphing arcsin and arccos

|−1

|1

arcsin

arccos

Note

cos θ = sin(π

2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 21 / 30

Page 50: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 51: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 52: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 53: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 54: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 55: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 56: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arctan

Let y = arctan x , so x = tan y . Then

sec2 ydy

dx= 1 =⇒ dy

dx=

1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1 + x2

So

d

dxarctan(x) =

1

1 + x2

x

1

y = arctan x

√1 + x2

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 22 / 30

Page 57: Lesson 16: Inverse Trigonometric Functions

Graphing arctan and its derivative

x

y

arctan

1

1 + x2

π/2

−π/2

I The domain of f and f ′ are both (−∞,∞)

I Because of the horizontal asymptotes, limx→±∞

f ′(x) = 0

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 23 / 30

Page 58: Lesson 16: Inverse Trigonometric Functions

Example

Let f (x) = arctan√

x . Find f ′(x).

Solution

d

dxarctan

√x =

1

1 +(√

x)2 d

dx

√x =

1

1 + x· 1

2√

x

=1

2√

x + 2x√

x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 24 / 30

Page 59: Lesson 16: Inverse Trigonometric Functions

Example

Let f (x) = arctan√

x . Find f ′(x).

Solution

d

dxarctan

√x =

1

1 +(√

x)2 d

dx

√x =

1

1 + x· 1

2√

x

=1

2√

x + 2x√

x

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 24 / 30

Page 60: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first.

Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 61: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 62: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 63: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 64: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 65: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 66: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 67: Lesson 16: Inverse Trigonometric Functions

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x , so x = sec y . Then

sec y tan ydy

dx= 1 =⇒ dy

dx=

1

sec y tan y=

1

x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =

√x2 − 1

1

So

d

dxarcsec(x) =

1

x√

x2 − 1

x

1

y = arcsec x

√x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 25 / 30

Page 68: Lesson 16: Inverse Trigonometric Functions

Another Example

Example

Let f (x) = earcsec x . Find f ′(x).

Solution

f ′(x) = earcsec x · 1

x√

x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 26 / 30

Page 69: Lesson 16: Inverse Trigonometric Functions

Another Example

Example

Let f (x) = earcsec x . Find f ′(x).

Solution

f ′(x) = earcsec x · 1

x√

x2 − 1

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 26 / 30

Page 70: Lesson 16: Inverse Trigonometric Functions

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 27 / 30

Page 71: Lesson 16: Inverse Trigonometric Functions

Application

Example

One of the guiding principles ofmost sports is to “keep your eyeon the ball.” In baseball, a batterstands 2 ft away from home plateas a pitch is thrown with avelocity of 130 ft/sec (about90 mph). At what rate does thebatter’s angle of gaze need tochange to follow the ball as itcrosses home plate?

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 28 / 30

Page 72: Lesson 16: Inverse Trigonometric Functions

Solution

Let y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy ′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thus

dt=

1

1 + (y/2)2· 1

2

dy

dt

When y = 0 and y ′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12

(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

2 ft

y

130 ft/sec

θ

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30

Page 73: Lesson 16: Inverse Trigonometric Functions

Solution

Let y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy ′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thus

dt=

1

1 + (y/2)2· 1

2

dy

dt

When y = 0 and y ′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12

(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

2 ft

y

130 ft/sec

θ

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30

Page 74: Lesson 16: Inverse Trigonometric Functions

Solution

Let y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy ′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thus

dt=

1

1 + (y/2)2· 1

2

dy

dt

When y = 0 and y ′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12

(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

2 ft

y

130 ft/sec

θ

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30

Page 75: Lesson 16: Inverse Trigonometric Functions

Solution

Let y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy ′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thus

dt=

1

1 + (y/2)2· 1

2

dy

dt

When y = 0 and y ′ = −130,then

dt

∣∣∣∣y=0

=1

1 + 0·12

(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec! 2 ft

y

130 ft/sec

θ

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 29 / 30

Page 76: Lesson 16: Inverse Trigonometric Functions

Summary

y y ′

arcsin x1√

1− x2

arccos x − 1√1− x2

arctan x1

1 + x2

arccot x − 1

1 + x2

arcsec x1

x√

x2 − 1

arccsc x − 1

x√

x2 − 1

I Remarkable that thederivatives of thesetranscendental functions arealgebraic (or even rational!)

V63.0121.002.2010Su, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions June 7, 2010 30 / 30