Lee Et Al-1997-Biotechnology Progress

download Lee Et Al-1997-Biotechnology Progress

of 6

Transcript of Lee Et Al-1997-Biotechnology Progress

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    1/6

    Sequential  δ-Integration for the Regulated I nsertion of ClonedGenes in  S a c c h a r o m y c es c e r ev i si a e  

    Frank W. F. Lee† and Nancy A. Da Silva*

    Department of Chemical and Biochemical Engineering, University of California, Irvine, California 92697-2575

    A novel δ-integra tion vector w a s developed to a llow the sequent ial insert ion of multiplecloned genes in the yeast   Saccha r omyces cer evi siae . To allow repetitive integrat ions,the reusable  U R A 3   B last er selection casset te w a s employed; the insert ions (of  CUP1p-  lacZ   in this study) were selected using the   U R A 3    ma r ker w h i ch w a s s u b s eq u en tl y“ pop ped” ou t b y r ecomb in a t i on b etw een f la n ki n g d i r ect r epea ts . Tr a n s f or ma n t scon ta i n ed on l y o n e n ew i n tegr a t ed c op y a f ter th e l os s o f th e   U R A 3    m a r k e r , a n dsubsequent tra nsforma tions were effective for the sequential insertion of a series ofgenes (one at a time) into dispersed chromosomal  δ   sequences. The structura l stabilityof th e integrat ions wa s location-dependent (ra nging from 75% to 100% aft er 50generat ions in complex medium w ith or w ithout gene expression), a nd t he integra tions(at least up t o f ive) ha d no significan t effects on t he growth of the cells. In a ddition, -gala ctosidase specific a ctivity levels va ried linearly w ith integrat ed copy n umber.The repetitive, regulated nature of integration with this vector is not possible withtraditional δ-integration or other homologous recombination methods, and is promising

    for f ine-tuning cloned gene copy number a nd for the insertion of metabolic pat hwa ygenes.

    Introduction

    The yea st   Saccharomyces cerevisiae is a very importa ntindustr ial microorganism a nd plays a key role in indus-tries ranging from pharmaceutical production to ethanolan d biomass production. In a ll of these applica tions, theab il i ty to introduce stab le foreign genes is extremelyimporta nt, a nd t he ab il i ty to engineer t he metab olism oft h i s y ea s t h a s t r em en d ou s p ot e n t ia l .   S. cerevisiae ,however, has a very limited range of plasmid vectors; only

    tw o are generally useful :   CE N -b ased plasmids a t one totw o copies per cell an d 2 µ-based plasmids at 10-50 copiesper cell (or up to 100 copies with the   leu2-d   selectiong e ne ) (E r h a r t a n d H o ll en b er g , 1 98 3; R om a n o s e t a l . ,1992). Fine-tun ing of copy num ber is not possible, yetoptimizing t he num ber of cloned genes can be extremelyimporta nt f or cells synt hesizing toxic compounds orsecreting complex proteins. Furt hermore, for the intro-duction of metab olic pat hwa ys into yeast , plasm ids mayb e t o t a l ly u n su it a b l e. I n g en er a l , o n ly on e cl a s s ofplasm ids can b e stab ly ma inta ined in the cell at a t ime,and only one or tw o pat hwa y genes ca n b e carr ied on theplasmid. However, several pathw ay genes must often b eintroduced, ideally with precisely regulated expression.Directed integrat ion of the genes into the host chromo-

    somes is an ideal method for introducing these genes;cloned gene loss during cell division is eliminated and,for st ructurally st ab le insertions, t he optimum numb erof genes can b e maintained constant.

    Trad itional integrat ion methods a re l imited in t ermsof t h e n u m be r of g en es w h i ch ca n b e i n s er t e d, t h estab il i ty of the integrated genes, and the regulation ofthe integration process. Homologous recombinat ion isthe standard method for introducing cloned genes intot h e y e a s t g en om e . G e n e r a l Y I p p la s m i d s t y p i ca l l y u s e

    auxotrophic markers (e.g.,   U R A 3    a n d   T R P1 ) a s t a r g etsites a nd a re integra ted a t only one to tw o copies per cell(Romanos et al., 1992). To insert additional copies of thesame (or dif ferent) genes, a new ma rker and t arget si temust be used. To obta in more copies of the cloned genein one round of tra nsformat ion, th ese auxotrophic mark-ers have been replaced by repetitive chromosomal DNAsequences (e.g. , the r ib osomal DNA cluster and   δ   se-quences) (Lopes et a l. , 1989; Sa kai, 1990, 1991). U singdomina nt selection mar kers, more tha n 40 copies can be

    integra ted a t one time; however, these integra tions occurprimarily in a t and em arra y (Pa rekh et al . , 1996; Shiomiet a l . , 1995; Wan g et al . , 1996). Tan demly repeat edcopies have a higher probability of being looped out byexcisiona l recombina tion (Roma nos et a l. , 1992), a nd thesta b ili ty of the insertions must b e carefully determined(Fujii et al . , 1990; Wang et al . , 1996). Work in ourl a b or a t o r y h a s d e m on s t r a t e d s i gn i fi ca n t s t r u ct u r a l i n -sta b ili ty w hen expression cassett es (M F R 1P /L-S U C 2 a n dCUP1p-lacZ ) ar e integrated in this ma nner (Lee and DaSilva, 1997; Wang et al., 1996). These current homologousr e com b in a t i on m e t h od s a l s o d o n o t a l l ow r e gu l a t e d ,sequentia l cloned gene insertions. Auxotrophic ma rkersare quickly depleted, and when antib iotic selection ise m pl oy e d , o n ly a s i n gl e r o u n d o f t r a n s f or m a t i o n i su s u a l ly p os s ib le . O n ce o n e o r t w o g e n es h a v e b ee ninserted, the selection of super-resistant strains occursat a much higher frequency than subsequent transforma-tions (unpublished data).

    The goal of our work was to develop a new homologousrecomb ination method which results in dispersed (notta ndem) integra tions and w hich can be used repetitively.This would improve the structural stability of the inser-tions and al low the sequentia l integration of a series ofthe sa me or different genes. To accomplish this, w e havecombined a reusable selection marker (the  U R A 3   B l a s t e rcassette) with t he  δ  ta rget seq uence. There a re ca. 425 δsequences dispersed t hroughout the yeast genome (D u-jon, 1996), an d each is a potent ial t a rget sit e for integra -

    † Current a ddress: Department of Chemical Engineering, Uni-versity of Colorado, Boulder, CO 80309-0424.

    * To whom all correspondence should be addressed. P hone:(714) 824-8288. F AX: (714) 824-2541.

    368   Biotechnol. Prog.  1997,  13,  368−373

    S8756-7938(97)00055-6 CCC: $14.00 © 1997 American Chemical Society and American Institute of Chemical Engineers

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    2/6

    tion. The  U R A 3   blast er cassette w as originally developedfor t he construction of multiply disrupted yeast stra ins(Alani et al., 1987) and allows the repeated used of  U R A 3  

    selection. The cassette consists of a yeast   U R A 3    genef la n k e d b y t w o d i r ect b a c t er i a l   hisG   re pe a t s . Af t erselection for the  U R A 3   gene on selective plat es, this genecan be lost by excisional recombination between the twohisG   r ep ea t s , a n d ce ll s w h i ch h a v e l os t t h e   U R A 3  gene(s) can be selected on 5-FOA (Boeke et al. , 1984).We have incorporated the  U R A 3   B l a s t e r c a s s e t t e a s t h es el ec t ion m a r k e r on ou r   δ-integrat ion vector (δ/U B -i n t e gr a t i o n ) a n d h a v e d e m on s t r a t e d t h e a b il it y t o p e r -f or m s e q u en t i a l c lon e d g e n e i n t e gr a t i on s of p r ec is enumbers of genes into dispersed chromosomal sites. Themodel gene inserted was the   Escheri chia coli lacZ   geneunder t he cont rol of the indu cible yeast   C U P 1   promoter.Th e s t r u ct u r a l s t a b il it y of t h e i n t eg r a t i on s a n d t h erelationship b etween integrat ed cloned gene numb er,growth, a nd expression w ere determined.

    Materials and Methods

    Strains.   Haploid  S. cerevisiae   strain TMy16 (M A T at r p 1  -∆901   u r a 3  -5 2 h i s 3  -∆201   ade2 -101 l y s2 -1 l e u 1  -12 can1 -100 G AL +) (Kirchner and Sandmeyer, 1993) wasemployed for the integration experiments.   E. col i    XL1-B l u e (F ′   [proA+ proB + lacI q  lacZ ∆M 15 Tn10 (T et R)]/supE 44  hsdR 17  r ecA1 gyrA 46  t hi r el A 1  l ac -) (Stra ta gene,CA) wa s used for plasmid constr uction a nd ma intena nce.

    Plasmids.  P lasmid pBluescript II S K(-) (Stra ta gene,CA) served as the b ackb one of the  δ-integration vector.P las mid pH 3 (B oeke et a l., 1985) is a   CE N -based plasmidcontaining a native Ty1 retrotransposon (Ty1-H3) with

    a unique  X h o I restriction site wit hin the 5′ en d  δ  element .

    P lasmid pLD3 (Durrin et a l. , 1991) carries a   CUP1p-lacZ cassette. Plasmid pNKY51 (Alani et al. , 1987) containst h e   U R A 3   B l a s t e r c a s s et t e .

    Construction of Vector pδ-UB. The  U R A 3   B l a s t e rcassett e wa s isola ted from pla smid pNKY51 (Alani et a l. ,1987) by   B am H I a n d   B gl II rest riction digests. This 3.8kb   B am H I /B gl I I f ra g m e nt w a s t h en i n se rt e d i n t o t h eB am HI si te with in th e multiple cloning si te of plasmidpBluescript II S K (-). To ensure different t ra nscriptiondirections f or the   U R A 3    B l a s t e r a n d   CUP1p-lacZ   cas-s et t e s i n t h e f in a l con s t r uct , t h e or ie nt a t i on of t h efragment shown in Figure 1a w as confirmed b y   B am H Ia nd   E co RI restr iction digests. Sub sequently, an 840 b pPv u I I /H i n d  III f ra gment conta ining the 5′ δ of native Ty1

    from plasmid pH3 (B oeke et a l . , 1985) wa s t reat ed withT4 D N A p ol ym er a s e t o f il l i n t h e 5′-o ve r h a n g a n dinserted into the   X h o I si te within the multiple cloning

    site (the 5′-overhang of the   X h o I si te w as also f i lled in).An or i en t a t i on op pos i t e t o t h a t of t h e   U R A 3    B l a s t e rcassette was confirmed b y   B am H I a n d   X h o I restrictiondigests. The f inal vector wa s designated pδ-UB (Figure1a) an d conta ins the  δ  sequ ence,  U R A 3    Blaster cassette,a n d u n iq u e   Sa c I ,   B st XI ,   Sa c I I ,   N ot I ,   X ba I ,   B am H I ,E co RI ,  S al I , a n d  K pn I s ites for cloned gene insert ion. Theunique   X h o I s it e w i th in t h e   δ   s e q u en ce i s u s ed f orl inear ization of the plasm id b efore tr an sforma tion.

    Media.  C omplex YP D medium (Sherma n et a l. , 1986)w a s u s e d f or t h e g r ow t h of  S. cerevisiae . S D C a nd SD -5-FOA plates were prepared as described previously (Leeand Da Silva, 1996a). LB medium (Sambrook et al., 1989)w a s t h e   E. c ol i    nut rient medium; 50 mg/L a mpicillins o d i u m s a l t ( S i g m a ) w a s a d d e d t o s e l e c t f o r p l a s m i d -containing (A m p R) cells. LB-X-gal plates (Sambrook eta l., 1989) conta ining 40 mg/L X-ga l a nd 50 mg/L a mpi-cillin sodium sa lt w ere used t o check for -galactosidaseactivi ty in   E . col i  .

    Cultivation.   All seed tub e cultures and b atch cul-tures for the a ctivi ty a ssays were conducted in 16× 125m m c u lt u r e t u b es c on t a i n in g 5 m L of m e d iu m . B a t c hcu l t u r es f or t h e s t a b i l it y a n d g r ow t h r a t e e xp er i m en t swere conducted in 250 mL f lasks containing 20 mL ofmedium. All tub es and f lasks were incub ated in an a irshaker (New Brunswick, model G25) at 30 °C and 250r p m . B i o m a s s c on ce n t r a t i on s w e r e d e t e r m in e d f r omoptical density measurements at 600 nm (NOVASPECII spectrophotometer , P har ma cia ).

    DNA Manipulation and Yeast Transformation.Lar ge-scale plasmid DNA preparat ion from   E. col i    w a scarried out using the Qiagen Plasmid Maxi kit (Qiagen).Tra nsforma tion of yeast wa s carried out using the lithiumacetat e method (Ito et a l . , 1983). Isolation of tota l DNAfrom yeast was performed according to the proceduredescribed by B oeke et a l. (1985).

    Southern Hybridization and -Galactosidase As-says.   The  lacZ  probe wa s a 3.3 kb B am H I /Sa l I f ragmentof plasmid pLD3 (Durrin et al. , 1991). The   hisG   probew a s a 1 . 1 k b   B gl I I /St u I f ragment of plasmid pNKY51(Ala ni et al., 1987). Nonra dioact ive colorometr ic hybr id-ization and detection wa s performed using the GE NIU Skit (Boehringer M annh eim).   -G a lactosida se specificactivi ty assa ys were conducted as fol lowed. Cells were

    Figure 1.   P l a sm i d m ap s of (a) pδ-UB and (b) pδ-la c Z- UB showing relative size, restriction sites, and location of inserted DNA.

    Biotechnol. Prog., 1997, Vol. 13, No. 4   369

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    3/6

    grown at 30 °C for 6 h with copper sulfate (1 mM) addedto the culture for the la st 30 min of incubation. Sa mpleswere then permeabilized with isopropyl alcohol (Sriencet al . , 1983).   -G a l a c t os i da s e s p eci fi c a c t i vi t y i n t h e

    cultur e (Abs420/min/g of cells) wa s mea sured via a n ONP Gassay on the permeabilized samples (Da Silva and Bailey1989) a t 420 nm (DMS 100S U V-vis spectrophotometer,Varian).

    Results

    Construction of Sequential δ/UB-Integration Sys-tem.   A δ-integration vector, pδ-UB (Figure 1a), contain-ing the δ  ta rget si te, the  U R A 3   Bla ster selection cass ette,a n d u n i q u e r e s t r i c t i o n s i t e s (Sa c I ,   B st XI ,   Sa c I I ,   N ot I ,X ba I ,   B am H I ,   E co RI ,   Sa l I , a n d   K pn I) for cloned geneinsertion w as constructed. The deta i ls are provided int h e M a t e r ia l s a n d M et h od s . Th e 3 .6 k b   E co RI /X h o Ifragment conta ining the   CUP1p-lacZ  expression casset te

    from plasmid pLD3 (Durrin et al., 1991) was inserted intot h e u n i q u e   E co R I a n d   Sa l I s it es on pδ-U B t o f or mp la s m i d pδ-lacZ -U B (F i g u re 1 b ). I n t h i s v e ct o r , t h eorienta tion of the  CUP1p-lacZ  expression cassette (whichlacks a terminat or) is the same as t ha t of the δ  element ,and th e terminat or within the  δ  element is utilized. TheU R A 3   B l a s t e r a n d   CUP1p-lacZ  cassett es ha ve oppositetra nscription directions. In plasmids pδ-UB and pδ-lacZ -U B , t he  X h o I s i t e w i t h i n t h e  δ  element is unique for thelineariza tion of the plasmid b efore tra nsf orma tion.

    Verification of U R A 3   Blaster Cassette Function.P l a s m i d pδ-lacZ -UB was linearized by restriction digestw i t h   X h o I a n d u s e d t o t r a n s f o r m   S. cerevisiae   s t r a i nTMy16 (Figure 2a,b). Cells wit h int egra tion(s) (Figure2c) were selected on ura cil-def icient SDC plates. The

    t r a n s f o r m a n t s w e r e c u lt u r e d i n t u b e s c on t a i n in g n on -s el ect i v e Y P D m e d iu m a n d t h e n s p r ea d on t o 5 -F O A-conta ining plates t o select cells wh ich had lost the  U R A 3  gene by excisiona l recombina tion betw een the t wo directb acterial  hisG  repea ts (Alani et a l., 1987). The fina l cellswere grown on uracil-deficient S DC plates t o confirm t heloss of the   U R A 3   gene.

    C e ll s a m p le s b ef or e a n d a f t e r   U R A 3    c ur i n g w e r ea n a l y ze d b y S ou t h e r n h y b r id i za t i o n s . G e n om i c D N Asa mples were isolat ed from these integrant s an d digestedby restriction endonuclease   E co R I ( a s s h o w n i n F i g u r e2 ). Th e p r ob e w a s a 3 .3 k b   lacZ   fr a g m e n t . A s a m p l eSouth ern blot is shown in Figure 3a. Typically, only oneor two (tandem) b ands were ob tained af ter transforma-tion. The ba nd a t ca . 11.27 kb (the size of the integra ting

    vector) in lane A indicat es the   E co R I f r a g m e n t s a r i s in gfrom t he inner sequence within t he ta ndem copies. Theo t h e r b a n d r e p r e s e n t s t h e f r a g m e n t a t o n e e n d o f t h e

    ta ndem repeat . Regardless of the numb er of copies atan integration si te b efore   U R A 3    curing, only one copyremained at that location after the excisional recombina-tion b etw een t he tw o direct b acterial  hisG   repeat s. Thisi s l i ke ly b ec a u s e a n y t w o   hisG   repeats can recombine,and we have selected for the recombination event whichexcises all  U R A 3   genes (due to 5-FOA counter selection).A sa mple stra in (before an d a fter  U R A 3   curing) carry inga s i n gl e i n t eg r a t i on w a s a l s o h y br i d iz ed w i t h t h e   hisG prob e (Figure 3b ). As predicted, t he size of the b anddecreased a fter excision of the  U R A 3   gene. This decrea sew a s 2 . 7 k b, t h e l en g t h o f t h e   U R A 3   g e n e a n d on e   hisG repeat ; t herefore, t he  U R A 3   B laster cassette perf ormedas expected.

    Recombinat ion between t he flanking  δ  sequences (rather

    t h a n t h e   hisG   repeats) can also occur during the 5-FOAselection step and r esult in loss of the entire insert. Thefrequency of this event varied for dif ferent integrationloca tions (ra nging from 0%to 80%) but w a s often below 10%. Therefore, in our work, 20 sa mples w ere routin elyassayed b y Southern b lot af ter   U R A 3    curing. We foundthat a high level of instab il i ty (of the entire insert) atthis 5-FOA step indicated a generally unsta b le integra -tion location.

    Identification of Sequential Integrations.   Thegoal of employing the   U R A 3    Blaster selection cassettew a s t o a l low s eq u e n t ia l , d i s pe r se d i n t e g r a t i on s of t h esame or dif ferent genes via   δ-integrat ion. To test thesuccess of this method, the integra nts (af t er   U R A 3    loss)were retra nsformed with the original int egrating vector

    Figure2.  ( a) P l asm i d pδ-lacZ -UB after l inearization with  X h o I .The  δ  vector (b) before and (c) after homologous recombinationi n t o t h e c h r om osom al t a r g e t se q u e n ce . Th e f i l le d a r r ows an dthick lines represent the vector-borne elements. The open arrowsand thin l ines represent the chromosomal sequences.

    Figure 3.  (a) Southern blot of stra in TMy16 after tra nsforma-tion/integr a tion wit h linear pδ-lacZ -UB . Genomic DNA wa s cutw i t h   E co R I a n d h y b ri di ze d w i t h t h e   lacZ   probe. Lanes A, C,an d E ar e t h e st r a i n s b ef or e  U R A 3   curing. Lane A contains t wot an d e m c op i e s; l an e s C an d E ar e si n g l e c op i e s. L an e s B , D ,a n d F a r e t h e r e s u lt i n g s t r a i n s f r om l a n es A , C , a n d E a f t e rU R A 3   curing. Lan e M is t he 1 kb ladder DNA mar ker (G ibco).(b) Southern blot of a TMy16 tra nsformant with one integratedcopy of plasm id pδ-lacZ -UB . Genomic DNA was cut w ith   E co R Ian d h y b r i d i z e d se p ar at e l y wi t h t h e   h is G   ( l an e s A an d B ) an dlacZ   ( lanes C and D) probes. Lanes A and C are the same DNAsam ple before   U R A 3    c u r i n g . L an e s B an d D ar e t h e r e su l t i n gstrain (from lanes A and C) af ter excision of the   U R A 3    gene.

    370   Biotechnol. Prog.,  1997, Vol. 13, No. 4

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    4/6

    and t he procedure wa s repeated. The new integrationsca n occu r a t a n ew l oca t i on or i n t a n d em w i t h t h eprevious integration; b oth have b een ob served in thisw o r k. H o w e ve r , on l y t h e n on t a n d e m i n t eg r a t i o ns r e -ma ined a fter plat ing on 5-FOA (a nd excisional loss of theU R A 3    gene). This is similar to the b ehavior af ter t hef irst round of tra nsforma tion. Therefore, only a n inte-grat ion ta rgeted to a new locat ion increases the final copynumber. After each round of tra nsformat ion, a Southernhyb ridization was performed to select cells with new,nonta ndem insert ions. The procedure can be performed

    repeti t ively t o increase integrat ed copy numb er b y onegene at a t ime. To da te, five CU P1p-lacZ  cassettes haveb een sequential ly inserted into dispersed chromosoma ll oc a t i on s ; t h e i n t e g r a t i on p a t t e r n s of t h e se s t r a i n s a r es h ow n i n F i g u r e 4. E v e r y b a n d d i ff er s i n s i z e (a n d i snot 11.27 kb); therefore, the nontandem single integra-tions have occurred at f ive distinct locations.

    Characterization of Integrated GeneE xpression.For the resulting st ra ins to be useful, subsequent expres-sion and control of the   δ-integrated genes is essential .To s t u d y t h e e ff ect of cop y n u m b er (a n d i n t eg r a t i o nlocation) on expression,  -galactosidase specific activitywa s a ssayed f or the st ra ins carrying one to f ive copies oft h e i n t e g r a t e d   CUP1p-lacZ   cassett es (Figure 4). Theuninduced ba ckground a ctivity wa s less tha n 10%of tha tu n d er i n d u ce d con d i t ion s f or e ve r y s t r a i n (d a t a n otshown); therefore, the  C U P 1   promoter is well regulated.The inducer was 1 mM CuSO4, a n d t h e i n d u ct i on t i m ewa s 30 min. The results (Figure 5) clearly demonstrat et h e l in e a r c or r e la t i on b et w e e n s p ec if ic a c t i v it y a n di n t eg r a t e d cop y n u m b e r . Th e   -galactosidase specificactivi t ies associated with single inserted copies of thelacZ  gene w ere also equivalent to t ha t f or one copy of aCE N -b ased plasmid carrying the   CUP1p-lacZ   cassette(Lee a nd D a Silva, 1996b ). Therefore, insertion into   δsequences ha s n o negat ive ef fect on expression. The   δsequences t hus provide excellent t a rgets for t he insertionof expression cassettes.

    Growth rate studies were performed in YPD medium

    w i t h a n d w i t h o u t 1 m M C u S O4 induction for th e stra inscarrying one to five dispersed   δ-integrated   CUP1p-lacZ cassettes. Growt h rat es varied b y less tha n 6%(higheror l ow e r ) com p a r e d w i t h t h e or i g in a l h os t (d a t a n otshown). Therefore, the dispersed   δ-mediated integra-tions (at least to a copy numb er of 5) had no signif ican teffect on growth even with expression of the cloned gene.

    Structural Stability of Dispersed δ-Mediated In-tegrations.  The structural stability of  δ/U B -int egra tionswa s a na lyzed f or the str ain carrying f ive copies (Figure4, lan e E) with a nd with out  lacZ   gene expression. Eigh tsequential batch cultivations (with at least seven genera-t i on s p er cu l t u r e) w e r e p er f or m e d i n co mp le x Y P Dmedium (with a nd w ithout 1 mM CuSO 4), a sample wasspread on YPD plates, a nd 30 colonies from ea ch set were

    randomly selected for the structural stab il i ty analysis.The -ga lactosidase specific activity of ea ch str a in (colony)w a s t h en a s s a y ed v ia O NP G t es t s, a n d t h e s a m pl essepara ted into two groups. Group I retained the originala ctivity level (before long-term cult ure), a nd G roup II ha d

    reduced activity. Southern blots were performed on tw o-thirds of the samples in Group I and al l of the samplesin Group II . All assayed sa mples from G roup I reta inedthe f ive integra ted   CUP1p-lacZ   cassettes. The samplesi n G r o u p I I , h o w e v e r , h a d l o s t o n e o r t w o i n t e g r a t e dcopies. The results a re shown in Ta ble 1.

    The average copy numbers in the final population were4.70 and 4.57 (Table 1) after more than 50 generationsin complex medium without a nd w ith   lacZ  gene expres-sion, respectively. Therefore, cloned gene expression didnot signif icant ly af fect structura l stab il i ty. I t should b enoted tha t in a l l cases t he same t wo (of f ive) b ands w erelost ; the other three b ands were alw ay s present, indicat -i n g e x t r em e ly s t a b l e i n t e gr a t i o n s. Th i s s u g g es t s t h a tstructural stab il i ty of   δ-mediated integrat ions depends

    on th e specific δ ta rget site utilized. The strain reta iningthe t hree sta b le copies could b e used for further t ra ns-forma tions to obta in insertions a t only very st ab le loca-tions.

    Results of “Blind”Sequential Integrations.   Therear e ca. 425 δ elements in th e yea st genome (Dujon, 1996),an d each is a potentia l target for integration. However,as discussed ab ove, repeat ed tra nsforma tions can resulti n n e w i n t eg r a t i on s a t a l r e a d y oc cu p ie d l o ca t i on s a n dt h u s t a n d e m r e pe a t s . Af t er   U R A 3    curing, these new integrant s did not ha ve higher copy numb er. Furth er-more, 5-FOA counterselection may result in loss of thee n t ir e i n t e g r a t i n g p l a s m i d v i a r e com b in a t i on a t t h e   δs eq u en ce s r a t h e r t h a n t h e   hisG   r e pe a t s . H o w e ve r ,performing S outhern hyb ridizat ions af ter each t ran sf or-

    ma tion to avoid selecting the t an dem insertions, or a f ter5-FOA selection to avoid loss of the entire insert, is time-consumin g. Therefore, the success of “blind” sequentia lintegrations (without Southern a na lysis) wa s evaluated.

    S t r a i n T M y 1 6 w a s t r a n s f o r m e d w i t h l i n e a r pδ-lacZ -UB, and 10 single colonies were picked from the SDCtransformation plates, mixed and cultured together innonselective YP D m edium, an d t ra nsferred to S D-5-FOAplates. Ten single colonies were selected f rom theseplates, mixed, and used for the next transformation; thiscycle was repeated severa l t imes. No Southern hyb rid-izat ions were performed between rounds. The distribu-tion of integrated copy numbers and integration patternswa s determ ined via S outhern blots on 20 single coloniesa f t e r f i v e a n d 1 0 r ou n d s o f t r a n s f or m a t i on (d a t a n ot

    Figure 4.   Southern blot demonstrating sequential integrationof the   CUP1p-lacZ   cassette via   δ/UB -integra tion. Stra ins withone to f ive sequentially inserted copies of the cassette (af terU R A 3    c u r i n g ) ar e sh own . G e n om i c D N A was c u t wi t h   E co R Ian d h y b r i d i z ed wi t h t h e   lacZ  probe. Lane M is the 1 kb ladderDNA marker (Gibco).

    Figure 5.   -Galactosidase specific activity versus copy numberof the  CUP1p-lacZ  cassett e inserted into host st ra in TMy16 viaδ/U B -i n t e gr at i on . D a t a wi t h e r r or b a r s r e p r ese n t a n a ve r ag eof multiple three to six strains w ith th e same copy number. Dat awi t h ou t e r r or b ar s a r e t h e r e su lt s f or a s i n g le st r ai n .

    Biotechnol. Prog., 1997, Vol. 13, No. 4   371

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    5/6

    shown). Only six integration patt erns existed af ter f iverounds, and only thr ee after 10 rounds. After five roundsof tra nsforma tion a nd selection, the percenta ge of colo-nies w ith one, tw o, an d t hree insert ions were 15%, 70%,a nd 15%, respectively. After 10 rounds, t he percenta geof colonies with tw o and three insertions w ere 25%a nd75%, respectively (none h a d only one insert ion). Themaximum integrated copy numb er ob tained in a singlecell wa s 3 after both five and 10 rounds of tra nsformat iona n d s el ect i on . Th i s i n d ica t e s t h a t m a n y r ou n d s o fretran sforma tion were unproductive. The new integra-tions were in a ta ndem arr ay with the previous ones, ort h e e n t ir e i n s e r t w a s l os t d u r in g t h e cu r i n g p r oce s s;

    therefore, for several rounds, no increase in copy numberoccurred after   U R A 3    curing (see previous discussion).Southern hybridizations between each round eliminatedthis problem.

    Discussion

    A novel integration vector employing a reusable (U R A 3  Bla ster) selection cassette a nd a repeti t ive target si te (δ)ha s been developed for regulat ed cloned gene insert ionsinto the chromosomes of  S. cerevisiae . This new homolo-gous recombination method allows  sequential  cloned geneinsertions into  dispersed   target si tes in the genome.

    A model inducible expression cassette,   CUP1p-lacZ ,w a s u s e d t o e v a l u a t e t h i s s y s t e m . Af t er f i v e r ou n d s o f

    transf ormation,  U R A 3   curing, and S outhern b lot ana ly-s is , a s er ie s o f s t r a i n s w i t h on e t o f i ve n on t a n d e mintegrations wa s ob ta ined. Gene expression wa s foundto be extremely w ell (linearly) correla ted w ith int egrat edcopy num ber. The level of expression for one integra tedgene wa s a lso compar ab le to tha t f or one copy of a CE N/ARS pla smid carr ying th e same expression cassett e (Leea n d D a S i l va , 1 99 6b ). Th e se r e s u lt s d e m on s t r a t e t h epotential of this method for the introduction of multipledif ferent genes (e.g., for meta b olic engineering), withsub sequent expression of each gene related to i ts copynumb er. In a ddition, the integrations (at least up to fivecopies per cell) did not n ota bly a ffect cell growth . Thestructural sta b ili ty wa s found t o b e location-dependent;the sta b ili t ies of the f ive integra tions w ere 75, 85, 100,

    100, an d 100%a fter 50 genera tions in complex medium.B l i n d s e q u en t i a l t r a n s f o r m a t i on s (w i t h o u t S o u t h er nan a lysis aft er each insertion) were only successful for th einsertion of small numbers of genes.

    The   S. cerevisiae   Ty1 a nd Ty3 retrotransposons cana l s o b e u s ed f or t h e i n se rt i on of cl on ed g en es i nt odispersed sites in the chromosomes (Boeke et al. , 1988;Cha lker a nd Sa ndmey er, 1992). This method exploits thereplicat ion (via reverse t ran scription) a nd integrat ionmecha nisms of the na tive Ty elements. Our lab oratoryha s a lso focused on developing an d evalua ting sequent ialintegration vectors using Ty1 and Ty3 elements (Lee andD a S i lv a , 1996a , b ; Wa n g a n d D a S i lv a , 1996). R et -rotransposition and homologous recombination are fun-d a m e n t a l l y d i ff er e n t a n d h a v e d i s t i n ct a d v a n t a g e s a n d

    disadva nta ges. Retrotra nsposon-mediat ed integra tion isvery promising a nd is a t ruly regula ted meth od of clonedgene integra tion. However, it is a lso more complex andrequires a reverse t ra nscription step; size l imits (f orsuccessful tra nsposition) on the inserted cloned genecassettes ma y a lso exist . Like Ty-mediated integra tion,the new   δ/U B method can be used to sequentia lly insertg e n es . H o w e ve r , i t i s a l s o m u ch m or e e a s i l y i m p le -mented, a nd a size l imita tion on the inserted gene(s) isnot a concern. Interestingly, b oth m ethods resulted instra ins w ith a pproximat ely the sa me expression level per

    integrated   CUP1p-lacZ   gene;   -gala ctosidase activi t iesfor stra ins car rying one t o five Ty1-integr a ted copies (Leea n d D a S i l va , 1 99 6b ) w e re s i m i la r t o t h o s e s h ow n i nFigure 5. In b oth cases, f ive integrated copies resultedin a pproximat ely 50% of the a ctivity measured f or thesame cassette on a 2 µ-b ased plasmid (Lee and D a Silva,1996b).

    While our r esults demonstra te the ef fectiveness ofδ/UB -integrat ion for repeti t ive integrat ions of clonedg e n es , f u r t h er i m pr ov em e n t i s p os s ib le i n t w o a r e a s .Increasing int egrat ed copy number w ould be significan tlyeasier i f tandem insertions (next to integrations f romprior t ran sforma tions) could b e avoided. In addition, i tw o u ld b e p r e fe r a b le i f a l l i n s er t i on s w e r e ca . 1 00 %structura lly sta ble during long-term cultivation. A modi-

    f ic a t i on w h i ch s h ou l d a l l ow t h e s e i m pr ov em e n t s (a l -though at the expense of reduced integration frequency)is to insert the expression and   U R A 3   B l a s t e r c a s s e t t esw i t h in t h e   δ   sequence a nd rely on a double-crossoverevent for integrat ion. The construction a nd a na lysis ofth is double-crossover vector and furt her modificat ions fora p p li ca t i on i n p ol y pl oi d y e a s t s t r a i n s a r e cu r r en t l yunderway in our lab oratory.

    Acknowledgment

    Th e a u t h or s a r e g r a t e f u l t o S u z a n n e B . S a n d m e ye r(University of Ca li fornia, Irvine) for providing str ainTM y16, J ef D. Boeke (J ohn Hopkins Un iversity) f orp la s m i d p H 3, a n d M ich a e l G r u n s t e i n (U n i v er s it y of

    Ca lifornia , Los Angeles) for plasm id pLD3. This work w a ssupported in part b y the National Science Foundation(G ra nt Nos. B ES -9119808 and B CS -9311021).

    Literature Cited

    Alani, E .; Ca o, L.; Kleckner, N. A Method for Gene D isruptionthat Allows Repeated Use of   U R A 3   Selection in t he Const ruc-tion of Multiply Disrupted Yeast S tra ins.   Genetics 1987,  1 16 ,541-545.

    Boeke, J . D.; L aC route, F.; Fink, G . R. A P ositive Selection forMuta nts La cking Orotidine-5′-P hosphate Decarboxylase Ac-tivity in Yeast : 5-Fluoro-Orotic Acid R esistance.   M ol. Gen .Genet.   1984,   19 7 , 345-346.

    B oe ke , J . D . ; G ar f i n k el , D . J . ; S t y l e s, C . A. ; F i n k , G . R . T yE l e m en t s Tr an sp ose t h r ou g h a n R N A I n t e r m e di at e .   Cell 1985,   40 , 491-500.

    B oe ke , J . D . ; Xu , H. ; F i n k , G . R . A G e n e r al M e t h od f or t h eChromosomal Amplification of Genes in Yeast.  Science 1988,23 9 , 280-282.

    C h a l k er , D . L . ; S a n d m e y er , S . B . Ty 3 I n t e g r a t es w i t h i n t h eRegion of RNA Polymerase III Transcription Initiation.  Genes Dev.  1992,   6 , 117-128.

    Da Silva, N. A.; Ba iley, J . E. Construction and Cha ra cterizat ionof a Tempera ture-Sensitive E xpression Sy stem in R ecombi-n a n t Y ea s t .  Biotechnol. Prog.  1989,   5 , 18-26.

    D u j on , B . Th e Y e ast G e n om e P r oje ct : Wh at D i d We L ear n ?Trends Genet.   1996,   12 , 263-270.

    D u r r i n , L . K. ; M an n , R . K. ; Kay n e , P . S . ; G r u n st e i n , M . Y e astHistone H 4 N-Terminal Sequence Is Required for Pr omoterActivation   I n V i v o  .   Cell   1991,   65 , 1023-1031.

    Erha rt, E .; Hollenberg, C. P . The P resence of a Defective  L E U 2  Gene in 2 µm DNA Recombinant Plasmids of  S acchar omyces 

    Table 1. Results of Structural Stability Test for FiveDispersed δ-Integrated  l a c Z    Genes after 50 Generationsof Growth (with and without   l a c Z    Expression)

    samples with   N   copiesremaining

    originalintegrated

    copy no.g r o w t h

    mediumsample

    size   N   ) 5a  N   ) 4b  N   ) 3b 

    5 YP D 30 2 3 5 25 YP D  + 1 m M

    C u S O4

    30 20 7 3

    a  Based on ONPG tests (two-thirds of the samples were verifiedvia Southern analysis) .   b  B a s e d o n S o u t h er n a n a l y s i s.

    372   Biotechnol. Prog.,  1997, Vol. 13, No. 4

  • 8/17/2019 Lee Et Al-1997-Biotechnology Progress

    6/6

    cerevisiae Is Responsible for Cur ing an d High Copy Number.J . Ba c teri o l. 1983,   15 6 , 625-635.

    Fujii, T.; Kondo, K.; Sh imizu, F.; Sone, H.; Tan aka , J . I . ; In oue,T. Application of a Ribosomal DNA Integration Vector in theC o ns t r u ct i on of a B r e w e r ’s Y ea s t H a v i n g   R -AcetolactateDecarboxylase Activity.  A p p l . E n v i r o n . M i c r ob i ol .   1990,   56 ,997-1003.

    Ito, H.; Fukuda, Y.; Murata , K.; Kimura, A. Transformation ofIntact Yeast Cells Treated with Alkali Cations.  J . Ba c teri o l.1983,   15 3 , 163-168.

    Ki r ch n e r , J . ; S a n d m e y er , S . B . P r ot e oly t i c P r oce ssin g of Ty 3P roteins Is Requ ired for Tra nsposition.  J . V i r o l . 1993,  6 7 , 19-

    28.Lee, F. W. F.; Da Silva , N. A. Applicat ion of Ty1 for Cloned G ene

    I n se r t i on : Am p l if i cat i on of a L ar g e R e g u lat e d E xpr e ssionC asse t t e i n  S acchar omyces cer evi siae .   Ap p l. Mic ro b io l. Bio - technol.  1996a,   44 , 620-623.

    L e e, F . W. F . ; D a S i l va, N . A. Ty 1-M e di at e d I n t e g r at i on ofE x pr e ss i on C a s s e t t es : H o s t S t r a i n E f fe ct s , S t a b i li t y , a n dP r od u ct S y n t h e si s  Biotechnol. Prog.  1996b,   12 , 548-554.

    Lee, F. W. F.; Da Silva, N. A. Improved Eff iciency and S ta bilityof M u l t i p l e C l on e d G e n e I n se r t i on s at t h e   δ   Sequence ofSacchar omyces cer evi siae .  A p p l. M ic ro bio l. B io tec h n ol.  1997,in press.

    Lopes, T. S.; Klootw ijk, J .; Veenstra , A. E.; va n der Aar , P . C.;van Heerikhuizen, H.; Raue, H. A.; Planta, R. J . High-Copy-N u m b er I n t e g r at i on i n t o t h e R i b osom al D N A of   Saccharo- m yces cer evi siae : a New Vector for High-Level Expression.Gene  1989,   79 , 199-206.

    P a r e k h , R . N . ; S h a w , M . R . ; W i t t r u p , K . D . A n I n t e g r a t i o nVector for Tunable, High Copy, Stable Integration into theDispersed Ty  δ  Sites of   Saccharomyces cerevisiae .  B iotechnol.Prog.  1996,   12 , 16-21.

    R om a n o s, M . A. ; S co re r C . A. ; C l a r e J . J . F or e ig n G e n eE xp r essi on i n Y e ast : a R e vie w.   Yeast   1992,   8 , 423-488.

    Sakai, A.; Shimizu, Y.; Hishinuma, F. Integration of Heterolo-gous Genes into the Chromosome of  Sacchar omyces cer evi siae 

    Using a Delta Sequence of Yeast retrotransposon Ty.   A p p l .M ic ro bio l. Bio tech n o l.  1990,   33 , 302-306.

    Sakai, A.; Ozawa, F.; Higashizaki, T.; Shimizu, Y.; Hishinuma,F. Enhanced Secretion of Human Nerve Growth Factor fromSacchar omyces cer evi siae  U si n g a n Ad van c ed   δ-IntegrationS y st e m .  B io/ T echnology   1991,   9 , 1382-1385.

    Sa mbrook, J .; Fritsch, E. F .; Mania tis, T.  M o lecu la r Clo n in g  :   a L a b o ra to ry Ma n u a l, 2nd ed.; Cold Spring Har bor Laborat oryPr ess: Cold Spring Ha rbor, NY, 1989.

    Sherman, F .; Fink , G. R.; H icks, J . B.   M eth ods in Yeast Geneti cs ;C old S p r i n g Har b or L ab or at or y P r e ss: C old S p r i n g Har b or ,NY, 1986.

    S h i om i , N . ; F u k u d a, H . ; M u r at a , K. ; K i m u r a, A . I m p r ove m en tof   S -Adenosylmethionine Production by Integration of theEthionine-Resistance Gene into Chromosomes of the YeastSacchar omyces cer evi siae .  Ap p l . M ic ro bio l. Bi otech n o l. 1995,42 , 730-733.

    Srienc, F.; Campbell , J . L.; Bailey, J . E. Detection of Bacterial -G ala ctosidase Activity in Individual   Sacchar omyces cer evi - siae  Cells by Flow Cytometry.  Biotechnol. Lett.  1983,   5 , 43-48.

    Wan g, X.; Da Silva, N. A. Site-Specif ic Integrat ion of Heterolo-gous Genes in Yeast via Ty3 Retrotra nsposition.  B iotechnol.Bioeng.  1996,   51 , 703-712.

    Wan g, X.; Wa ng, Z.; Da S ilva, N. A. G418 Selection an d St abilityof Cloned Genes Int egrated a t th e Chromosomal  δ  Sequencesof  S acchar omyces cer evi siae .  B iotechnol. Bi oeng. 1995,  4 9 , 45-51.

    Accepted J une 4, 1997.X

    B P 970055D

    X Abstract published in  A dvance ACS Abstracts,  J uly 1, 1997.

    Biotechnol. Prog., 1997, Vol. 13, No. 4   373