Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

83
Lectures on Heat Transfer: Introduction - Fundamentals by Dr. M. Thirumaleshwar formerly: Professor, Dept. of Mechanical Engineering, St. Joseph Engg. College, Vamanjoor, Mangalore

Transcript of Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Page 1: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Lectures on Heat Transfer:Introduction - Fundamentals

by

Dr. M. Thirumaleshwarformerly:

Professor, Dept. of Mechanical Engineering,St. Joseph Engg. College, Vamanjoor,

Mangalore

Page 2: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Preface

• This file contains Introduction to Heat Transfer and Fundamental laws governing heat transfer.

• The slides were prepared while teaching • The slides were prepared while teaching Heat Transfer course to the M.Tech. students in Mechanical Engineering Dept. of St. Joseph Engineering College, Vamanjoor, Mangalore, India, during Sept. – Dec. 2010.

Aug. 2016 2MT/SJEC/M.Tech.

Page 3: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• It is hoped that these Slides will be useful to teachers, students, researchers and professionals working in this field.

• For students, it should be particularly useful to study, quickly review the subject, useful to study, quickly review the subject, and to prepare for the examinations.

• ���������� ���� ��� ������

Aug. 2016 3MT/SJEC/M.Tech.

Page 4: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

References• 1. Cengel Y. A. Heat Transfer: A Practical

Approach, 2nd Ed. McGraw Hill Co., 2003• 2.Cengel, Y. A. and Ghajar, A. J., Heat and

Mass Transfer - Fundamentals and Applications, 5th Ed., McGraw-Hill, New York, NY, 2014.

Aug. 2016 MT/SJEC/M.Tech. 4

5th Ed., McGraw-Hill, New York, NY, 2014.• 3. Incropera , Dewitt, Bergman, Lavine:

Fundamentals of Heat and Mass Transfer, 6th

Ed., Wiley Intl.• 4. Necati Ozisik: Heat Transfer – A Basic

Approach, McGraw Hill

Page 5: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

References… contd.

• 5. M. Thirumaleshwar: Fundamentals of Heat & Mass Transfer, Pearson Edu., 2006

• 6. M. Thirumaleshwar: Software Solutions to Problems on Heat Transfer – CONDUCTION-Problems on Heat Transfer – CONDUCTION-Part-I, Bookboon, 2013

• http://bookboon.com/en/software-solutions-to-problems-on-heat-transfer-ebook

Aug. 2016 MT/SJEC/M.Tech. 5

Page 6: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Heat TransferIntroduction - Fundamentals

• Applications - Modes of heat transfer-Fundamental laws – governing rate equations – concept of thermal resistance

Aug. 2016 MT/SJEC/M.Tech. 6

equations – concept of thermal resistance – general heat conduction equation –different boundary conditions.

Page 7: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Applications of Heat Transfer:

• Mechanical Engineering: Boilers, Heat Exchangers, Turbine systems, Internal combustion engines etc.

• Metallurgical Engineering: Furnaces,

Aug. 2016 MT/SJEC/M.Tech. 7

• Metallurgical Engineering: Furnaces, Heat treatment of components etc.

• Electrical Engineering: Cooling systems for electric motors, generators, transformers etc.

Page 8: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Applications of Heat Transfer(Contd.)..

• Chemical Engineering: Process equipments used in Refineries, Chemical plants etc.

• Nuclear Engineering: In removal of heat generated by nuclear fission using liquid metal

Aug. 2016 MT/SJEC/M.Tech. 8

generated by nuclear fission using liquid metal coolants, design of nuclear fuel rods against possible burn – out etc.

• Aerospace Engineering & Space Technology:In the design of aircraft systems and components, Rockets, Missiles etc.

Page 9: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Applications of Heat Transfer(Contd.)..

• Cryogenic Engineering: In the production, storage, transportation and utilization of cryogenic liquids (at very low temperatures ranging from 100 K to 4 K or even lower) for various Industrial, Research and Defence applications.

Aug. 2016 MT/SJEC/M.Tech. 9

applications.• Civil Engineering: In the design of Suspension

bridges, railway tracks, Airconditioning and Insulation of buildings etc.

• Principles and methods of Heat Transfer are widely applied in many, many areas that affect our lives.

Page 10: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Fundamental Laws governing Heat Transfer:

– 1. First Law of Thermodynamics – gives conservation of energy.

– 2. Second Law of Thermodynamics – gives direction of heat flow.

Aug. 2016 MT/SJEC/M.Tech. 10

direction of heat flow.– 3. Equation of continuity – gives

conservation of mass.– 4. Equation of flow – Newton’s Second Law

of motion—Navier Stokes’ Equations

Page 11: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Fundamental Laws governing Heat Transfer (contd.):

– 5. Rate equations governing the three modes of Heat Transfer:

– Conduction – Fourier’s Law of Conduction– Convection – Newton’s Law of cooling

Aug. 2016 MT/SJEC/M.Tech. 11

– Convection – Newton’s Law of cooling– Radiation – Stefan – Boltzmann’s Law– 6. Empirical relations for fluid properties

such as specific heat, thermal conductivity, viscosity etc.

– 7. Equation of State for the fluid.

Page 12: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Modes of Heat Transfer

• Three main modes:• Conduction …. heat flow by direct contact• Convection … heat carried by moving fluid• Radiation … heat flow does not need an • Radiation … heat flow does not need an

intervening medium• In practical cases, a combination of one or

more of the above modes are present

Aug. 2016 MT/SJEC/M.Tech. 12

Page 13: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Conduction:

• Governing ‘rate equation’ for conduction is: Fourier’s Law.

• Q = -k A (T2 – T1)/L

k

T1

Q

Slope = dT/dx

Aug. 2016 MT/SJEC/M.Tech. 13

• Qx = -k A (T2 – T1)/L...For a plane slab, in steady state

= k A (T1 – T2)/L(Watts)

T2

X

L

Page 14: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Assumptions behind Fourier’s Law:

• Fourier’s Law is an empirical law, derived from experimental observations and not from fundamental, theoretical considerations.

• Fourier’s Law is defined for steady

Aug. 2016 MT/SJEC/M.Tech. 14

• Fourier’s Law is defined for steady state, one dimensional heat flow.

• It is assumed that the bounding surfaces between which heat flows are isothermal and that the temperature gradient is constant i.e. the temperature profile is linear.

Page 15: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Assumptions behind Fourier’s Law (contd.):

• There is no internal heat generation in the material.

• The material is homogeneous (i.e. constant density) and isotropic (i.e. thermal conductivity

Aug. 2016 MT/SJEC/M.Tech. 15

density) and isotropic (i.e. thermal conductivity is the same in all directions).

• Fourier’s Law is applicable to all states of matter i.e. solid, liquid or gas.

• Fourier’s Law helps to define ‘thermal conductivity’

Page 16: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Rate of heat transfer by conduction, Q, is given by:L

T1 T2

Aug. 2016 MT/SJEC/M.Tech. 16

Rate of heat transfer by conduction, Q, is given by:

Q = k A �T/L (W)

where, k = thermal cond. (W/m.K)

A = Area of cross-section, (m^2)

L = Length, (m), �T= temp. difference, (K)

Page 17: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 17

Page 18: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Range of ‘k’ of various materials at room temperature

Aug. 2016 MT/SJEC/M.Tech. 18

Page 19: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Variation of ‘k’ with temperature

Aug. 2016 MT/SJEC/M.Tech. 19

Page 20: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Variation of ‘k’ with temperature for Cu and Al

Aug. 2016 MT/SJEC/M.Tech. 20

Page 21: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Convection

• In convection, heat is carried from place to place by bulk movement of fluidof fluid

• Convection currents are set up when a pan of water is heated

Aug. 2016 MT/SJEC/M.Tech. 21

Page 22: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Newton’s Law of Cooling:Q = h.A.�T

Aug. 2016 MT/SJEC/M.Tech. 22

Page 23: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Radiation

• energy is transferred by means of electromagnetic waves.

• can take place through vacuum.

Aug. 2016 MT/SJEC/M.Tech. 23

• can take place through vacuum.

• electromagnetic waves can propagate through empty space.

Page 24: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Radiationaverage frequency ∝ absolute temperature

Aug. 2016 MT/SJEC/M.Tech. 24

Page 25: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Radiation

Aug. 2016 MT/SJEC/M.Tech. 25

Page 26: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Greenhouse Effect

Incoming UV radiation from Sun easily passes through the glass walls of a greenhouse. Weaker IR radiation, however,

Aug. 2016 MT/SJEC/M.Tech. 26

IR radiation, however, has difficulty passing through the glass walls and is trapped inside, thus warming the greenhouse.

Page 27: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Black body

A good absorber like lampblack is also a good emitter

Aug. 2016 MT/SJEC/M.Tech. 27

good emitterAnd, a poor absorber like polished silver is also a poor emitter

Page 28: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

The Stefan–Boltzmann Law of Radiation

Rate of radiant energy emission is proportional to the fourth power of its Absolute temperature.

Stefan’s law and is expressed as follows:

P = � .�. A. T4 (W)

Aug. 2016 MT/SJEC/M.Tech. 28

P = � .�. A. T4 (W)

� is the Stefan-Boltzmann constant, = 5.67 × 10-8 W/m2.K4.� is the emissivity, which is a number between 0 and 1.

T is the temp. in Kelvin

Page 29: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 29

Page 30: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Radiation Heat Transferbetween bodies

• If the surrounding is at TS then the net power radiated is:

P = � � A [ T4 - TS4]

• Assuming on a dark, dry, night, T = 3 K:

Aug. 2016 MT/SJEC/M.Tech. 30

• Assuming on a dark, dry, night, TS = 3 K:• Frost may form even if air temperature > 0 C since radiation cools the surface faster than conduction heat lost from the ground or air.

Page 31: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Concept of Thermal resistance:

• Conduction:• Q = kA(T1 – T2)/L

k

T1

T2

T(x)

Q

Aug. 2016 MT/SJEC/M.Tech. 31

T2

XL

QT1 T2

Rcond = L/kA

Q

Rth = L/(kA) is known as “Thermal resistance” of the slab for conduction.

Page 32: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Concept of Thermal resistance (contd.):

• It is seen that there is a clear analogy between the flow of heat and flow of electricity, as shown below:

Aug. 2016 MT/SJEC/M.Tech. 32

Page 33: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Concept of Thermal resistance (contd.):

• Convection heat transfer – thermal resistance :

U, Tf, h TsQ

Q = h A (Ts – Tf)

Aug. 2016 MT/SJEC/M.Tech. 33

Q QTs Tf

Rconv = 1/hA

Rconv = 1/(hA)

Note that the Units are : (C/W) or (K/W)

Page 34: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Concept of Thermal resistance (contd.):

• Radiation heat transfer – thermal resistance :• Q1 = F1 A1 σ (T1

4 – T24), W

• F1 is known as view factor, which includes the effects of orientation, emissivities and the distance between the surfaces

Aug. 2016 MT/SJEC/M.Tech. 34

Page 35: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Practical applications of Thermal resistance concept:

• To analyse the problems where one or more modes of heat transfer occursimultaneously

• To analyse the problems where multiple

Aug. 2016 MT/SJEC/M.Tech. 35

• To analyse the problems where multiple layers of materials of different thermal conductivities are used; ex: in furnace walls

Page 36: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Limitations for the use of thermal resistance concept:

• Thermal concept can be used only when all the following conditions are satisfied:

Aug. 2016 MT/SJEC/M.Tech. 36

• One dimensional conduction• Steady state conduction • No internal heat generation

Page 37: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Thermal diffusivity (αααα):• Often, while dealing with transient

conduction problems, we come across a quantity called ‘Thermal diffusivity’. Note that Unit of α is: m2/s

Aug. 2016 MT/SJEC/M.Tech. 37

that Unit of α is: m /s

Values of αααα for materials vary over a wide range:

For copper at room temperature, its value is approx. 113 * 10-6 m2/s

For glass it is about 0.34 * 10-6 m2/s.

Page 38: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Thermal diffusivity (αααα) for a few materials at room temperature:

Aug. 2016 MT/SJEC/M.Tech. 38

Page 39: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Thermal diffusivity (αααα) for a few materials at room temperature(contd.):

Aug. 2016 MT/SJEC/M.Tech. 39

Page 40: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION

• This is also known as ‘heat diffusion equation’ or, simply ‘heat equation’.

• Consider a differential volume element (dx.dy.dz); • Making an energy balance on this differential element:

Q

Aug. 2016 MT/SJEC/M.Tech. 40

E

B

C

D

A

H

G

F

dxdy

dzy

z

x

Q x Q x+dx

Q y

Q y+dy

Q z+dz

Q z

Page 41: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

B

CG

Fz

Q y+dy

Q z+dz

• Ein – Eout + Egen = Est …eqn. (1)

Energy, In

Aug. 2016 MT/SJEC/M.Tech. 41

E

D

A

H

dxdy

dzy

x

Q x Q x+dx

Q y

Q z

Energy, In

Energy, out

Energy, generated

Energy stored

Page 42: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

Applying eqn (1):

Aug. 2016 MT/SJEC/M.Tech. 42

where qg is the heat gen. rate per unit volume, (W/m3)

Now, etc.

eqn. (2)

Page 43: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

Then, from eqn. (2):

But, from Fourier’s Law:

eqn. (3)

Aug. 2016 MT/SJEC/M.Tech. 43

But, from Fourier’s Law:

Page 44: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

Then, subst. in eqn. (3) and dividing by dx.dy.dz, we get:

eqn. (4)

Aug. 2016 MT/SJEC/M.Tech. 44

This is the general form of heat diffusion equation in Cartesian coordinates, for time dependent (i.e. unsteady state) heat conduction, with variable thermal conductivity and uniform heat generation within the body.

Page 45: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

Now, if the material is isotropic i.e. the thermal conductivity is the same in all the three directions, i.e. kx = ky = kz = k say, :

eqn. (5)

Aug. 2016 MT/SJEC/M.Tech. 45

If k is constant and does not vary with temperaturei.e. k does not change with position, then:

eqn. (6)

Page 46: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

i.e.eqn. (7)

where α = k/(ρcp) is thermal diffusivity, and

Aug. 2016 MT/SJEC/M.Tech. 46

where α = k/(ρcp) is thermal diffusivity, and∇ = Laplacian operator

Special cases:

1. Steady state: i.e.

Page 47: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

eqn. (8)

Then, eqn. (7) becomes:

Aug. 2016 MT/SJEC/M.Tech. 47

This is known as ‘Poisson equation’.

2. With no internal heat generation, i.e. qg = 0:

Then, eqn. (7) becomes:

eqn. (9)

This is known as ‘Diffusion equation’.

Page 48: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

3. Steady state, with no internal heat generation, i.e.

eqn. (10)

τ∂∂T

Therefore,

Aug. 2016 MT/SJEC/M.Tech. 48

This is known as ‘Laplace equation’.

4. One dimensional, steady state, with no internal heat generation,i.e.

Therefore,

Page 49: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION FOR HEAT CONDUCTION (contd.)

eqn. (11)

So, equation (7) becomes:

Aug. 2016 MT/SJEC/M.Tech. 49

Page 50: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION in cylindrical coordinates:

eqn. (12)

Aug. 2016 MT/SJEC/M.Tech. 50

For one dimensional conduction in r - direction only, we get:

eqn. (13)

Page 51: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

GENERAL DIFFERENTIAL EQUATION in spherical coordinates:

eqn. (14)

Aug. 2016 MT/SJEC/M.Tech. 51

For one dimensional conduction in r - direction only, we get:

eqn. (15)

Page 52: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Boundary and Initial conditions:Commonly encountered Boundary Conditions (B.C’s) are:

• Prescribed temperature conditions at the boundaries – known as B.C. of the first kind or Dirichlet condition:

Aug. 2016 MT/SJEC/M.Tech. 52

Page 53: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Boundary and Initial conditions:Commonly encountered Boundary Conditions (B.C’s) are:

• Prescribed heat flux condition at the boundaries - known as B.C. of the second kind or Neumann condition

Aug. 2016 MT/SJEC/M.Tech. 53

Page 54: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Prescribed heat flux condition at the boundaries:

Two special cases:

1. Insulated boundary: 2. Thermal symmetry:

Aug. 2016 MT/SJEC/M.Tech. 54

Page 55: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Boundary and Initial conditions:Commonly encountered Boundary Conditions (B.C’s) are:

• Convection boundary condition - known as B.C. of the third kind:

Aug. 2016 MT/SJEC/M.Tech. 55

Page 56: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Boundary and Initial conditions:Commonly encountered Boundary Conditions (B.C’s) are:

• Interface boundary condition - known as B.C. of the fourth kind:

Aug. 2016 MT/SJEC/M.Tech. 56

Page 57: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• Example3.1: Temperature variation in a slab is given by: T(x) = 100 + 200 x –500 x2, where x is in metres; x = 0 at the left face and x = 0.3 m at the right face. Thermal conductivity of the material k = 45 W/(m.C). Also, cp = 4 kJ/(kg.K) and ρρρρ = 1600 kg/m3. Determine:

• Temperature at both surfaces• Heat transfer at left face and its direction• Heat transfer at right face and its direction

Aug. 2016 MT/SJEC/M.Tech. 57

• Heat transfer at right face and its direction• Is there any heat generation in the slab? If so, how

much?• Max. temperature in the slab and its location• Time rate of change of temperature at x = 0.1 m if

the heat generation rate is suddenly doubled• Draw the temperature profile in the slab

Page 58: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

k, qg

Temp. Profile

QrightQleft

Data:

L 0.3 m

k 45 W/m.C

c p 4000 J/kg.K

ρ 1600 kg/m^3

α k

Aug. 2016 MT/SJEC/M.Tech. 58

L

α k

ρ c p.

α 7.031 10 6= m2/s

Fig. Ex. 3.1 (a)

Page 59: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

T x( ) 100 200 x. 500 x2. Define T(x)...i.e. temp. as a function of x

Temp. at left face: i.e. at x = 0: T 0( ) 100= C....Ans.

Temp. at right face: i.e. at x = 0.3 m: T 0.3( ) 115= C....Ans.

To find max. temp.:

Aug. 2016 MT/SJEC/M.Tech. 59

Define the first derivative of T(x): T' x( )xT x( )d

d

Also, define the second derivative of T(x): T'' x( )xT' x( )d

d

--------------------------------------------------------------------------------------------------------------------------

Page 60: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• By hand calculation: • We get: T (̀x) = 200 –1000.x• We set T (̀x) equal to zero to get the

position xmax where temp. is max.:• i.e. 200 – 1000.x = 0. • This gives x = 0.2 m. Substitute this value

Aug. 2016 MT/SJEC/M.Tech. 60

• This gives x = 0.2 m. Substitute this value of xmax in T(x) to get the value of Tmax.

• So, Tmax = T(0.2) = 100 + 200 x 0.2 – 500 x (0.2)2. = 120 C.

Page 61: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Temp. distribution in the slab:

T x( )110

115

120Variation of T(x) with x for Slab

Aug. 2016 MT/SJEC/M.Tech. 61

x0 0.1 0.2 0.3

100

105

Fig. Ex. 3.1 (b)

Note from the graph that the max. temp. occurs at x = 0.2 m and its value is 120 C, as

already calculated.

Page 62: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

To calculate the heat fluxes at the left and right faces :

Apply the Fourier's Law at x = 0 and at x = 0.3 m, remembering that temp. gradient is

given by T'(x), aready defined.

q left k T' 0( ). ..applying Fourier's Law at left face i.e. at x = 0

q left 9 103= ...Heat flux at the left face (W/m^2) ; note that -ve sign indicates heat flowing from right to left

Aug. 2016 MT/SJEC/M.Tech. 62

q right k T' 0.3( ). ..applying Fourier's Law at right face i.e. at x = 0

q right 4.5 103= ...Heat flux at the right face (W/m^2 ); note that +ve sign indicates heat flowing from left to right.

q total q left q right ...Total heat generated per m^2 of surface

q total 1.35 104= W/m^2...Total heat generated/m^2

Page 63: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• To calculate the time rate of change of temperature at x = 0.1 m when qg is suddenly doubled:

• We have the time dependent differential equation for

Therefore, qg, the volumetric heat gen. rate is given by Total heat gen. per unit volume:

q gq total

1 0.3.q g 4.5 104= W/m^3...vol. heat gen. rate in the slab....Ans .

Aug. 2016 MT/SJEC/M.Tech. 63

• We have the time dependent differential equation for heat conduction in Cartesian coordinates:

τατρ

∂∂=

∂∂=+

∂∂ TT

k

c

k

q

xT pg 12

2

Page 64: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• Therefore, αα

τ k

q

xTT g+

∂∂=

∂∂

2

2

From the given equation for temperature distribution, it is clear that does not depend on x, i.e.

depends only on qg:

2

2

xT

∂∂

τ∂∂T

Aug. 2016 MT/SJEC/M.Tech. 64

depends only on qg: τ∂

dtbyd τ x( ) α T'' x( ). α2 q g

.

k. ...define dT/d ττττ as a function x . Now, we can get dT/dτ

at any x by simply substituting that value of x in the function defined

dtbyd τ 0.1( ) 7.031 10 3= C/s....time rate of change of temp. ...Ans.

Note that this is true for all x since T''(x) does not depend on x for the temperature distribution given

Page 65: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

• Example 1.3 : Electronic power devices are mounted to a heat sink having an exposed surface area of 0.045 m^2 and an emissivity of 0.8. When the devices dissipate a total power of 20 W and air and surroundings are at 27 C, the and surroundings are at 27 C, the average sink temperature is 42 C. What average temperature will the heat sink reach when the devices dissipate 30 W for the same environmental conditions?

Aug. 2016 MT/SJEC/M.Tech. 65

Page 66: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 66

Page 67: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 67

Page 68: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 68

Page 69: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 69

Page 70: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 70

Page 71: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 71

Page 72: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 72

Page 73: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 73

Page 74: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 74

Page 75: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 75

Page 76: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 76

Page 77: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 77

Page 78: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 78

Page 79: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 79

Page 80: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 80

Page 81: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 81

Page 82: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Aug. 2016 MT/SJEC/M.Tech. 82

Page 83: Lectures on Heat Transfer - Introduction - Applications - Fundamentals - Governing Laws

Variation of T2 with epsilon:

Aug. 2016 MT/SJEC/M.Tech. 83