Lectures 3,4 (Ch. 22) Gauss’s law

38
Lectures 3,4 (Ch. 22) Gauss’s law E 1.Flux of 2. Gauss’s law 3. Application a)Finding of Flux b)Finding of Charge c)Conductors properties d)Finding of E for symmetric charge distributions (sphere, cylinder, plane)

description

Lectures 3,4 (Ch. 22) Gauss’s law. 1.Flux of. 2. Gauss’s law 3. Application Finding of Flux Finding of Charge Conductors properties Finding of E for symmetric charge distributions (sphere, cylinder, plane). Flux of a uniform. should cross the surface to produce a flux. - PowerPoint PPT Presentation

Transcript of Lectures 3,4 (Ch. 22) Gauss’s law

Page 1: Lectures 3,4 (Ch. 22) Gauss’s law

Lectures 3,4 (Ch. 22)Gauss’s law

E

1.Flux of2. Gauss’s law3. Applicationa)Finding of Fluxb)Finding of Chargec)Conductors propertiesd)Finding of E for symmetric charge distributions(sphere, cylinder, plane)

Page 2: Lectures 3,4 (Ch. 22) Gauss’s law

Flux of a uniform E

EAAEEACosAE

EonAorAonEprojecteither

should cross the surface to produce a flux

n

n

n

E

Page 3: Lectures 3,4 (Ch. 22) Gauss’s law

Compare to a flux of water

should cross the surface to produce a fluxv

Page 4: Lectures 3,4 (Ch. 22) Gauss’s law

A

A

A

?EAorEA 0 EAEAtotal

For the closed surface A

is out of the surface

Page 5: Lectures 3,4 (Ch. 22) Gauss’s law

General definition of flux of E

E

AdEd

E AdE

enclosedQnoconstN

NNif

NEAA

NE

outin

0

~~

d

Page 6: Lectures 3,4 (Ch. 22) Gauss’s law

Flux of E through the closed surface containing a point charge, q

2. Arbitrary surface with arbitrary q position

1. Sphere with q placed in the center

0

22

0

44

qr

r

qEAAdE

02

0

0

22

02

0

4

444

q

r

dAqAdEor

qR

R

qdA

R

q

22 4

)(

4

)()()(

R

RqdA

r

rqdArdArEAdE

AdE

Page 7: Lectures 3,4 (Ch. 22) Gauss’s law

Flux of E through the closed surface containing an ensemble of charges

q1 q2

qN

Superposition principle:

N

i

iN

ii

N

ii

N

ii

QqAdEAdEAdE

1 00111

N

iiEE

1

Charges outside the closed surface do not contribute to the flux through this surface

inAd

outAd For each solid angle flux in =-flux out or

densityechvolumeais

dVQ

AdElawsGauss volumeencl

surface

arg

:'00

0 outin NN

Page 8: Lectures 3,4 (Ch. 22) Gauss’s law

Gauss’s Law may be used 1) to find a flux 2) Q enclosed 3) E for some symmetric charge distributions.

Page 9: Lectures 3,4 (Ch. 22) Gauss’s law

Figure 22.15

Find the flux through the closed surfaces: A,B, C, D.

Page 10: Lectures 3,4 (Ch. 22) Gauss’s law

Figure 22.16

Find the flux through the indicated closed surfaces.

Page 11: Lectures 3,4 (Ch. 22) Gauss’s law

Find the flux through each side.

q

Page 12: Lectures 3,4 (Ch. 22) Gauss’s law

Find the charge inside

Q=?

E0=500N/CEL=400N/C

=10m

Page 13: Lectures 3,4 (Ch. 22) Gauss’s law

Conductors properties

1.E=0 within conductor in electrostatics(otherwise F=qE and hence the charges

would be moving, i.e. nonstatic)

2.q =0 in every point inside solid conductor. It follows from the Gauss’s law, indeed, since E=0

one has

q=0 0

0enclq

AdE

Shrinking a Gaussian surface to any point

inside a conductor one gets 0enclq

Page 14: Lectures 3,4 (Ch. 22) Gauss’s law

Conductors properties3. E near the surface

AEALaw

sGaussfromfollowsitEb

movingbewould

electronsotherwiseEEei

surfaceconductoratoEa

0

0

:

')

)

(..

,)

Is the surface charge density, i.e. a charge per unit area

Page 15: Lectures 3,4 (Ch. 22) Gauss’s law

E

Page 16: Lectures 3,4 (Ch. 22) Gauss’s law

Conductors properties

4.In the absence of external charge placed into the cavitya) inside a cavity E=0b) there is no charge on the inner surface of the conductor(“Scooping out theorem” in electrically neutral material)

Page 17: Lectures 3,4 (Ch. 22) Gauss’s law

-

-

++

Faraday’s cageInsert uncharged conductor into E

E=0, qinner=0

Is it safe to be in a carduring the thunderstorm?

Page 18: Lectures 3,4 (Ch. 22) Gauss’s law

Conductors properties

5. In the presence of external charge q inside the cavitya)Charge –q is induced on the inner surface of the cavity. It follows from the Gauss’s law. Since E=0 inside a conductor one gets:

0

0enclq

AdE

Hence qqei

qqq

inner

innerencl

..

0

b) Charge qqc resides on the outer surface of a cavity.

It follows from the charge conservation law: qqqqqqqq cinnercoutercinnerouter

Page 19: Lectures 3,4 (Ch. 22) Gauss’s law
Page 20: Lectures 3,4 (Ch. 22) Gauss’s law

Faraday’s ice-pail experiment

Page 21: Lectures 3,4 (Ch. 22) Gauss’s law

Calculation of E using the Gauss’s lawThree types of the symmetry for a charge distribution

1. Spherical A=4 π r2, V=4 π r3/3

1. Cylindrical Aside=2 π rL, V= π r2L

2. Plane A=L1L2, V=AL3

Page 22: Lectures 3,4 (Ch. 22) Gauss’s law

Application of Gauss’s law• Look for the symmetry of charge distribution• Use the Gaussian surface of the same symmetry

• Then you’ll get A

qE

qEAAdE enclencl

00

lqorAqorVq

ondestributiechuniformafor

dlqordAqordVq

enclenclencl

enclenclencl

arg

here

volume

surfacelinear

charge density

Page 23: Lectures 3,4 (Ch. 22) Gauss’s law

1. r<R, E=0(conductor)

2. r>R, 0

24

qrE

2r

kqE

q

Page 24: Lectures 3,4 (Ch. 22) Gauss’s law

Dielectrcic sphere

03

0

03

32

3

0

32

34

4

3/4

3

44:.1

r

R

QrE

R

QrrE

R

Q

rrERr

Q

2. r>R, 0

24

qrE

2r

kqE

Page 25: Lectures 3,4 (Ch. 22) Gauss’s law

Q

L

Q

L is the total length of the line

Page 26: Lectures 3,4 (Ch. 22) Gauss’s law

sheetA

Q

Q

Page 27: Lectures 3,4 (Ch. 22) Gauss’s law
Page 28: Lectures 3,4 (Ch. 22) Gauss’s law

Conducting spherical layer

a

b

Q

q

2

2

)(.3

0.2

.1

r

qQkEbr

conductorEbrar

kqEar

q-q Q+q

1. Find a surface charge density on inner and outer sides.2.Find E(r).

2

2

4

4

b

qQa

q

b

a

Page 29: Lectures 3,4 (Ch. 22) Gauss’s law

Dielectric spherical layer

q

Q a

b

)(

)((

3/)(4

3/)(44.3

)(.2;.1

332

33

2

33

0

332

22

abr

arkQ

r

kqE

ab

Q

arqrE

r

qQkEbr

r

kqEar

Page 30: Lectures 3,4 (Ch. 22) Gauss’s law

Earnshaw’s Theorem, 1842 • A collection of point charges cannot be maintained

in a stable stationary equilibrium configuration solely by the electrostatic interaction of the charges.

• Suppose a charge q is at stable equilibrium in p. P. • It means if it is moved away from this point in any

direction there should be a restoring force (opposite to the direction of a displacement.)

• It means that there is a flux of E through the nearby surface surrounding p. P.

• According to Gauss’s theorem p. P should be occupied with a charge.

• But we supposed that the charge was shifted from this point.

P

Page 31: Lectures 3,4 (Ch. 22) Gauss’s law

J.J. Thomson’s “plum pudding” model of atom

Sir J.J.Tomson (1856 -1940) Nobel prize for discovery of e,1906

Such atom would be unstable!

Page 32: Lectures 3,4 (Ch. 22) Gauss’s law

Long conducting cylinder2a

1.r<a E=0 (conductor)2.r> a the same as for theline of charge

aL

aL

L

Q 22

Connection between the linear and surface charge density

r

kE

2

Page 33: Lectures 3,4 (Ch. 22) Gauss’s law

Long dielectric cylinder2a

1.r>a the same result as for conducting cylinder:

20

2

2

0

2

22

2

.2

a

rk

La

QrE

La

Q

lrrlE

ar

r

kE

2

Page 34: Lectures 3,4 (Ch. 22) Gauss’s law

Conducting cylindrical shell with a line of charge

a b

1 2

1 21

NB: linear charge density on an inner surface of a shell ison an outer surface

1.r<a the same result as for a line in the center:

r

kE

)(2 21

2.a<r<b E=0 (conductor)

3. r>b

1

21

r

kE 12

Page 35: Lectures 3,4 (Ch. 22) Gauss’s law

Dielectric cylindrical shell with a line of charge

a b

1 2

1.r<a and 3.r>b the same results as for conducting cylindrical shell

2.a<r<b

)(

)(22

)()(

)(2

22

2221

222

222

0

22

0

1

abr

ark

r

kE

ababL

Q

larlrlE

Page 36: Lectures 3,4 (Ch. 22) Gauss’s law

A conducting slab

x

z

ya

-a

L1

L2

L2 >>a,L1>>a, r<< L2 ,r<<L1

1.|x|<a E=0 (conductor)

2.|x|>a

2EA=2σA/ε0→E= σ/ε0

σ =Q/2S, S= L1 L2

E=Q/2ε0S

Page 37: Lectures 3,4 (Ch. 22) Gauss’s law

A dielectric slab

x

z

ya

-a

L1

L2

L2 >>a,L1>>a, r<< L2 ,r<<L1

1.|x|>a2EA=σ*A/ε0→E= σ*/2ε0

NB: σ* =Q/S, S= L1 L2

E=Q/2ε0S the same as for conductor

2.|x|<a 2EA=ρA2x/ε0

ρ=Q/S2a= σ*/2a

E=σ*x/2aε0

0

Page 38: Lectures 3,4 (Ch. 22) Gauss’s law

Conclusions1. Inside of charged bodiesConductors E=0Dielectrics E ~ rIndependent on the symmetry of charge distribution

2.Outside of charged bodiesE is the same for conductors and dielectrics.It depends on the symmetry of charge distribution:Sphere E ~ 1/r2

Cylinder E ~1/r (r<<L)Plane E=const (r<< L1 and L2)

3. For finite size bodies at r→∞ E=kQtotal/r2

4. E jumps on the surface of the charged conductor

E changes continuously on the surface of dielectric