Lecture’17:’’ Face’Recogni2on’ - Stanford...

51
Lecture 17 - Fei-Fei Li Lecture 17: Face Recogni2on Professor FeiFei Li Stanford Vision Lab 15Nov14 1

Transcript of Lecture’17:’’ Face’Recogni2on’ - Stanford...

Page 1: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Lecture  17:    Face  Recogni2on  

Professor  Fei-­‐Fei  Li  Stanford  Vision  Lab  

15-­‐Nov-­‐14  1  

Page 2: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

What  we  will  learn  today  •  Introduc2on  to  face  recogni2on  •  Principal  Component  Analysis  (PCA)  •  The  Eigenfaces  Algorithm  •  Linear  Discriminant  Analysis  (LDA)  

15-­‐Nov-­‐14  2  

Turk  and  Pentland,  Eigenfaces  for  Recogni2on,  Journal  of  Cogni-ve  Neuroscience  3  (1):  71–86.    P.  Belhumeur,  J.  Hespanha,  and  D.  Kriegman.  "Eigenfaces  vs.  Fisherfaces:  Recogni2on    Using  Class  Specific  Linear  Projec2on".  IEEE  Transac-ons  on  pa7ern  analysis  and  machine    intelligence  19  (7):  711.  1997.  

Page 3: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Courtesy  of  Johannes  M.  Zanker  

15-­‐Nov-­‐14  

“Faces”  in  the  brain  

3  

Page 4: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

“Faces”  in  the  brain  

15-­‐Nov-­‐14  

Kanwisher,  et  al.  1997  

4  

Page 5: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

•  Digital  photography  

Face  Recogni2on  

15-­‐Nov-­‐14  5  

Page 6: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Face  Recogni2on  •  Digital  photography  •  Surveillance  

15-­‐Nov-­‐14  6  

Page 7: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

•  Digital  photography  •  Surveillance  •  Album  organiza2on  

Face  Recogni2on  

15-­‐Nov-­‐14  7  

Page 8: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Face  Recogni2on  •  Digital  photography  •  Surveillance  •  Album  organiza2on  •  Person  tracking/id.  

15-­‐Nov-­‐14  8  

Page 9: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

•  Digital  photography  •  Surveillance  •  Album  organiza2on  •  Person  tracking/id.  •  Emo2ons  and  expressions  

Face  Recogni2on  

15-­‐Nov-­‐14  9  

Page 10: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

•  Digital  photography  •  Surveillance  •  Album  organiza2on  •  Person  tracking/id.  •  Emo2ons  and  expressions  

•  Security/warfare  •  Tele-­‐conferencing  •  Etc.  

Face  Recogni2on  

15-­‐Nov-­‐14  10  

Page 11: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

The  Space  of  Faces  

•  An  image  is  a  point  in  a  high  dimensional  space  –  If  represented  in  grayscale  

intensity,  an  N  x  M  image  is  a  point  in  RNM  

–  E.g.  100x100  image  =  10,000  dim  

15-­‐Nov-­‐14  11  

Slide  credit:  Chuck  Dyer,  Steve  Seitz,  Nishino  

Page 12: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

The  Space  of  Faces  

•  An  image  is  a  point  in  a  high  dimensional  space  –  If  represented  in  grayscale  

intensity,  an  N  x  M  image  is  a  point  in  RNM  

–  E.g.  100x100  image  =  10,000  dim  

•  However,  rela2vely  few  high  dimensional  vectors  correspond  to  valid  face  images  

•  We  want  to  effec2vely  model  the  subspace  of  face  images  

15-­‐Nov-­‐14  12  

Slide  credit:  Chuck  Dyer,  Steve  Seitz,  Nishino  

Page 13: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Image    space  

Face  space  

•   Maximize  the  scaier  of  the  training  images  in  face  space  

•   Computes  n-­‐dim  subspace  such  that  the  projec2on  of  the  data  points  onto  the  subspace  has  the  largest  variance  among  all  n-­‐dim  subspaces.          

15-­‐Nov-­‐14  13  

Page 14: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

 

•   So,  compress  them  to  a  low-­‐dimensional  subspace  that      captures  key  appearance  characteris2cs  of  the  visual  DOFs.        

Key  Idea  

•   USE  PCA  for  es2ma2ng  the  sub-­‐space          (dimensionality  reduc2on)  

• Compare  two  faces  by  projec2ng  the  images  into  the  subspace  and  measuring  the  EUCLIDEAN  distance  between  them.  

15-­‐Nov-­‐14  14  

Page 15: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

What  we  will  learn  today  •  Introduc2on  to  face  recogni2on  •  Principal  Component  Analysis  (PCA)  •  The  Eigenfaces  Algorithm  •  Linear  Discriminant  Analysis  (LDA)  

15-­‐Nov-­‐14  15  

Turk  and  Pentland,  Eigenfaces  for  Recogni2on,  Journal  of  Cogni-ve  Neuroscience  3  (1):  71–86.    P.  Belhumeur,  J.  Hespanha,  and  D.  Kriegman.  "Eigenfaces  vs.  Fisherfaces:  Recogni2on    Using  Class  Specific  Linear  Projec2on".  IEEE  Transac-ons  on  pa7ern  analysis  and  machine    intelligence  19  (7):  711.  1997.  

Page 16: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  Formula2on  •  Basic  idea:  

–  If  the  data  lives  in  a  subspace,  it  is  going  to  look  very  flat  when  viewed  from  the  full  space,  e.g.  

–  This  means  that  if  we  fit  a  Gaussian  to  the  data  the  equiprobability  contours  are  going  to  be  highly  skewed  ellipsoids  

15-­‐Nov-­‐14  16  

technical

note

Slide  inspired  by  N.  Vasconcelos  

1D  subspace  in  2D   2D  subspace  in  3D  

Page 17: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  Formula2on  •  If  x  is  Gaussian  with  covariance  Σ,  the  equiprobability  

contours  are  the  ellipses  whose  

–  Principal  components  φi  are  the    eigenvectors  of  Σ  –  Principal  lengths  λi  are  the    eigenvalues  of  Σ  

 •  by  compu2ng  the  eigenvalues  we  know  the  data  is  

–  Not  flat  if  λ1  ≈  λ2      –  Flat  if  λ1  >>  λ2      

15-­‐Nov-­‐14  17  

technical

note

Slide  inspired  by  N.  Vasconcelos  

x1  

x2  

λ1  λ2  

φ1  

φ2  

Page 18: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  Algorithm  (training)  

15-­‐Nov-­‐14  18  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 19: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  Algorithm  (tes2ng)  

15-­‐Nov-­‐14  19  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 20: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  An  alterna2ve  manner  to  compute  the  principal  components,  

based  on  singular  value  decomposi2on  •  Quick  reminder:  SVD  

–  Any  real  n  x  m  matrix  (n>m)  can  be  decomposed  as  

–  Where  M  is  an  (n  x  m)  column  orthonormal  matrix  of  let  singular  vectors  (columns  of  M)  

–  Π  is  an  (m  x  m)  diagonal  matrix  of  singular  values  –  NT  is  an  (m  x  m)  row  orthonormal  matrix  of  right  singular  vectors  

(columns  of  N)  

15-­‐Nov-­‐14  20  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 21: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  To  relate  this  to  PCA,  we  consider  the  data  matrix  

•  The  sample  mean  is  

15-­‐Nov-­‐14  21  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 22: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  Center  the  data  by  subtrac2ng  the  mean  to  each  column  of  X  •  The  centered  data  matrix  is  

15-­‐Nov-­‐14  22  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 23: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  The  sample  covariance  matrix  is  

 where  xic  is  the  ith  column  of  Xc  •  This  can  be  wriien  as  

15-­‐Nov-­‐14  23  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 24: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  The  matrix  

   is  real  (n  x  d).  Assuming  n>d  it  has  SVD  decomposi2on  

   

 and  

15-­‐Nov-­‐14  24  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 25: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  

•  Note  that  N  is  (d  x  d)  and  orthonormal,  and  Π2  is  diagonal.  This  is  just  the  eigenvalue  decomposi2on  of  Σ  

•  It  follows  that  –  The  eigenvectors  of  Σ  are  the  columns  of  N  –  The  eigenvalues  of  Σ  are  

•  This  gives  an  alterna2ve  algorithm  for  PCA  

15-­‐Nov-­‐14  25  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 26: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  by  SVD  •  In  summary,  computa2on  of  PCA  by  SVD  •  Given  X  with  one  example  per  column  

–  Create  the  centered  data  matrix  

–  Compute  its  SVD  

–  Principal  components  are  columns  of  N,  eigenvalues  are  

15-­‐Nov-­‐14  26  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 27: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Rule  of  thumb  for  finding  the  number  of  PCA  components  

•  A  natural  measure  is  to  pick  the  eigenvectors  that  explain  p%  of  the  data  variability  –  Can  be  done  by  ploxng  the  ra2o  rk  as  a  func2on  of  k  

–  E.g.  we  need  3  eigenvectors  to  cover  70%  of  the  variability  of  this  dataset  

15-­‐Nov-­‐14  27  

technical

note

Slide  inspired  by  N.  Vasconcelos  

Page 28: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

What  we  will  learn  today  •  Introduc2on  to  face  recogni2on  •  Principal  Component  Analysis  (PCA)  •  The  Eigenfaces  Algorithm  •  Linear  Discriminant  Analysis  (LDA)  

15-­‐Nov-­‐14  28  

Turk  and  Pentland,  Eigenfaces  for  Recogni2on,  Journal  of  Cogni-ve  Neuroscience  3  (1):  71–86.    P.  Belhumeur,  J.  Hespanha,  and  D.  Kriegman.  "Eigenfaces  vs.  Fisherfaces:  Recogni2on    Using  Class  Specific  Linear  Projec2on".  IEEE  Transac-ons  on  pa7ern  analysis  and  machine    intelligence  19  (7):  711.  1997.  

Page 29: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenfaces:  key  idea  

•  Assume  that  most  face  images  lie  on  a  low-­‐dimensional  subspace  determined  by  the  first  k  (k<<d)  direc2ons  of  maximum  variance  

•  Use  PCA  to  determine  the  vectors  or  “eigenfaces”  that  span  that  subspace  

•  Represent  all  face  images  in  the  dataset  as  linear  combina2ons  of  eigenfaces  

15-­‐Nov-­‐14  29  

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Page 30: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenface  algroithm  •  Training  

1.  Align  training  images  x1,  x2,  …,  xN  

2.  Compute  average  face  

3.  Compute  the  difference  image  (the  centered  data  matrix)  

15-­‐Nov-­‐14  30  

technical

note

Note  that  each  image  is  formulated  into  a  long  vector!  

µ =1N

xi∑

Page 31: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenface  algroithm    

4.  Compute  the  covariance  matrix  

5.  Compute  the  eigenvectors  of  the  covariance  matrix  Σ  6.  Compute  each  training  image  xi  ‘s  projec2ons  as  

7.  Visualize  the  es2mated  training  face  xi    

15-­‐Nov-­‐14  31  

technical

note

xi → xic ⋅φ1, xi

c ⋅φ2,..., xic ⋅φK( ) ≡ a1,a2, ... ,aK( )

xi ≈ µ + a1φ1 + a2φ2 +...+ aKφK

Page 32: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li! 15-­‐Nov-­‐14  32  

 

6.  Compute  each  training  image  xi  ‘s  projec2ons  as  

7.  Visualize  the  es2mated  training  face  xi    

xi → xic ⋅φ1, xi

c ⋅φ2,..., xic ⋅φK( ) ≡ a1,a2, ... ,aK( )

xi ≈ µ + a1φ1 + a2φ2 +...+ aKφK

a1φ1 a2φ2 aKφK...

Eigenface  algroithm  technical

note

Page 33: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenface  algroithm  

•  Tes2ng  1.  Take  query  image  t  2.  Project  y  into  eigenface  space  and  compute  projec2on  

3.  Compare  projec2on  w  with  all  N  training  projec2ons  •  Simple  comparison  metric:  Euclidean  •  Simple  decision:  K-­‐Nearest  Neighbor      (note:  this  “K”  refers  to  the  k-­‐NN  algorithm,  is  different  from  the  previous  K’s          referring  to  the  #  of  principal  components)  

15-­‐Nov-­‐14  33  

technical

note

t→ (t −µ) ⋅φ1, (t −µ) ⋅φ2,..., (t −µ) ⋅φK( ) ≡ w1,w2,...,wK( )

Page 34: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenfaces  look  somewhat  like  generic  faces.  

15-­‐Nov-­‐14  34  

Visualiza2on  of  eigenfaces  

Page 35: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

•  Only  selec2ng  the  top  K  eigenfaces  à  reduces  the  dimensionality.    •  Fewer  eigenfaces  result  in  more  informa2on  loss,  and  hence  less  

discrimina2on  between  faces.  

Reconstruc2on  and  Errors  

K  =  4  

K  =  200  

K  =  400  

15-­‐Nov-­‐14  35  

Page 36: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Summary  for  Eigenface  

Pros  •  Non-­‐itera2ve,  globally  op2mal  solu2on  

Limita2ons  

• PCA  projec2on  is  op&mal  for  reconstruc&on  from  a  low  dimensional  basis,  but  may  NOT  be  op&mal  for  discrimina&on…    

• See  supplementary  materials  for  “Linear  Discrimina2ve  Analysis”,  aka  “Fisherfaces”  

15-­‐Nov-­‐14  36  

Page 37: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

What  we  will  learn  today  •  Introduc2on  to  face  recogni2on  •  Principal  Component  Analysis  (PCA)  •  The  Eigenfaces  Algorithm  •  Linear  Discriminant  Analysis  (LDA)  

15-­‐Nov-­‐14  37  

Turk  and  Pentland,  Eigenfaces  for  Recogni2on,  Journal  of  Cogni-ve  Neuroscience  3  (1):  71–86.    P.  Belhumeur,  J.  Hespanha,  and  D.  Kriegman.  "Eigenfaces  vs.  Fisherfaces:  Recogni2on    Using  Class  Specific  Linear  Projec2on".  IEEE  Transac-ons  on  pa7ern  analysis  and  machine    intelligence  19  (7):  711.  1997.  

Page 38: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Fischer’s  Linear  Discriminant  Analysis  

•  Goal:  find  the  best  separa2on  between  two  classes  

15-­‐Nov-­‐14  38  

Slide  inspired  by  N.  Vasconcelos  

Page 39: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li! 15-­‐Nov-­‐14  39  

Basic  intui2on:  PCA  vs.  LDA  

Page 40: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  We  have  two  classes  such  that  

•  We  want  to  find  the  line  z  that  best  separates  them    

•  One  possibility  would  be  to  maximize  

15-­‐Nov-­‐14  40  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 41: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  However,  this  difference  

can  be  arbitrarily  large  by  simply  scaling  w  •  We  are  only  interested  in  the  direc2on,  not  the  magnitude  •  Need  some  type  of  normaliza2on  •  Fischer  suggested  

15-­‐Nov-­‐14  41  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 42: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  We  have  already  seen  that  

•  also  

15-­‐Nov-­‐14  42  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 43: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  And  

•  which  can  be  wriien  as  

15-­‐Nov-­‐14  43  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 44: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

2S

1S

BS

21 SSSW +=

x1

x2 Within  class  scaier  

Between  class  scaier  

15-­‐Nov-­‐14  44  

Visualiza2on    techn

ical

note

Page 45: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  Maximizing  the  ra2o  

–  Is  equivalent  to  maximizing  the  numerator  while  keeping  the  denominator  constant,  i.e.    

–  And  can  be  accomplished  using  Lagrange  mul2pliers,  where  we  define  the  Lagrangian  as  

–  And  maximize  with  respect  to  both  w  and  λ  

15-­‐Nov-­‐14  45  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 46: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  •  Sexng  the  gradient  of  

 With  respect  to  w  to  zeros  we  get      

 or      •  This  is  a  generalized  eigenvalue  problem    •  The  solu2on  is  easy  when                exists    

15-­‐Nov-­‐14  46  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 47: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Linear  Discriminant  Analysis  (LDA)  

•  In  this  case  

•  And  using  the  defini2on  of  S  

•  No2ng  that  (μ1-­‐μ0)Tw=α  is  a  scalar  this  can  be  wriien  as  

•  and  since  we  don’t  care  about  the  magnitude  of  w  

15-­‐Nov-­‐14  47  

Slide  inspired  by  N.  Vasconcelos  

technical

note

Page 48: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

PCA  vs.  LDA  

 

•  Eigenfaces  exploit  the  max  scaier  of  the  training  images  in  face  space  

•  Fisherfaces  aiempt  to  maximise  the  between  class  sca<er,  while  minimising  the  within  class  sca<er.  

15-­‐Nov-­‐14  48  

Page 49: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Results:  Eigenface  vs.  Fisherface  (1)  

•  Variation in Facial Expression, Eyewear, and Lighting

•  Input:  160  images  of  16  people  •  Train:  159  images  •  Test:  1  image  

With glasses  

Without glasses  

3 Lighting conditions   5 expressions  

15-­‐Nov-­‐14  49  

Page 50: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

Eigenface  vs.  Fisherface  (2)  

15-­‐Nov-­‐14  50  

Page 51: Lecture’17:’’ Face’Recogni2on’ - Stanford Universityvision.stanford.edu/teaching/cs131_fall1415/lectures/...Lecture 17 - !!! Fei-Fei Li! Whatwe’will’learn’today’

Lecture 17 - !!!

Fei-Fei Li!

What  we  have  learned  today  •  Introduc2on  to  face  recogni2on  •  Principal  Component  Analysis  (PCA)  •  The  Eigenfaces  Algorithm  •  Linear  Discriminant  Analysis  (LDA)  

15-­‐Nov-­‐14  51  

Turk  and  Pentland,  Eigenfaces  for  Recogni2on,  Journal  of  Cogni-ve  Neuroscience  3  (1):  71–86.    P.  Belhumeur,  J.  Hespanha,  and  D.  Kriegman.  "Eigenfaces  vs.  Fisherfaces:  Recogni2on    Using  Class  Specific  Linear  Projec2on".  IEEE  Transac-ons  on  pa7ern  analysis  and  machine    intelligence  19  (7):  711.  1997.