lecture27.fm5

download lecture27.fm5

of 12

Transcript of lecture27.fm5

  • 8/7/2019 lecture27.fm5

    1/12

    EE 105 Spring 1997

    Lecture 27

    MOSFET Current Source Equivalent Circuit

    s Small-signal model: source resistance is r

    o

    2

    by inspection

    s

    Combine output resistance with DC output current for approximate equivalent

    circuit ... actual i

    OUT

    vs. v

    OUT

    characteristics are those ofM

    2

    with V

    GS2

    = V

    REF

    gm1vgs1gm2vgs2ro1 ro2

    +

    vgs2= 0 V

    1/ro2ro2

    iOUT iOUT

    vOUT

    vOUT(W/L)2(W/L)1

    IREF

    (W/L)2(W/L)1

    IREF

    (a) (b)

    VDSSAT2

    +

  • 8/7/2019 lecture27.fm5

    2/12

    EE 105 Spring 1997

    Lecture 27

    The Cascode Current Source

    s

    In order to boost the source resistance, we can study our single-stage building

    blocks and recognize that a common-gate is attractive, due to it high output

    resistance

    s

    Adapting the output resistance for a common gate amplier, the cascode current

    source has a source resistance of

    s

    Penalty for cascode:

    needs larger V

    OUT

    to function

    VDD

    IREF

    M3 M4

    M2M1

    iOUT

    RS

    1 g+m4

    ro2

    ( )ro4

    gm4

    ro4

    ro2

    =

  • 8/7/2019 lecture27.fm5

    3/12

    EE 105 Spring 1997

    Lecture 27

    MOSFET Current Sources and Sinks

    s

    n-channel current source sinks

    current to ground ... how do we source

    current

    from the positive supply? Answer: p-channel current sources...?

    s

    By mixing n-channel and p-channel diode-connected devices, we can produce

    current sinks and sources from a reference current connected to V

    DD

    or ground.

    VDD

    IREF

    MR

    M1 M2M3

    iOUT1 iOUT2 iOUT3

    IREF

    MR

    VDD

    M1M2

    M4M3

    iOUT1 iOUT2

    iOUT4

  • 8/7/2019 lecture27.fm5

    4/12

    EE 105 Spring 1997

    Lecture 27

    Two-Stage BiCMOS Transconductance Amplier

    s

    Concept: cascade two common-emitter stages to get more transconductance --

    not

    an ideal solution but illustrates DC biasing and interstage coupling

    s

    DC Issues:

    First stage: npn common-emitter amplier (DC level shifts up)

    Second stage: pnp common-emitter amplier (DC level shifts down)

    +

    _

    vs

    RS

    Gm2vin2

    Rin2

    +

    _

    vin2

    Gm1vin1

    Rin1

    +

    _

    vin1Rout2Rout1 RL

    iout

    CE (npn) CE (pnp)

  • 8/7/2019 lecture27.fm5

    5/12

    EE 105 Spring 1997

    Lecture 27

    Amplier Topology

    s

    Basic structure -- connect output of CE (npn) to input of CE (pnp),

    attach small-signal voltage input (withR

    S

    ) and load (

    R

    L

    )

    s

    Current source design:

    assume that the reference current is generated by a resistor (to ground)

    +

    _+

    _

    vs

    VBIAS

    RS

    V+ = + 2.5 V

    Q2

    Q1

    iout

    RL

    V- = - 2.5 V

    iSUP2

    iSUP1

  • 8/7/2019 lecture27.fm5

    6/12

    EE 105 Spring 1997

    Lecture 27

    DC Currents from Reference

    s p-channel diode-connectedM3 is used to generate source-gate voltages forM4(which generates iSUP1) and forM5. The second current supply is generated by

    rst using -ID5 to generate a DC gate-source voltage via diode-connectedM7.

    V+ = + 2.5 V

    M4M3

    M7

    RREF

    M5

    M6

    V- = - 2.5 V

    IREF

    iSUP1 - ID5

    iSUP2

    ID7

  • 8/7/2019 lecture27.fm5

    7/12

    EE 105 Spring 1997

    Lecture 27

    Two-Stage BiCMOS Transconductance Amplier

    s Combine current source circuit with basic amplier topology

    +

    _+

    _

    vs

    VBIAS

    RS

    V+ = + 2.5 V

    Q2

    M4

    Q1

    M3

    M7

    RREF

    M5

    M6

    iout

    RL

    V-= - 2.5 V

  • 8/7/2019 lecture27.fm5

    8/12

    EE 105 Spring 1997

    Lecture 27

    DC Bias of Transconductance Amplier

    s Given: VOUT= 0 V (DC); V+ = 2.5 V, V- = -2.5 V;RS=RL = 50 k

    s Standard simplications: assumeIB = 0 for bipolar transistors, neglect Early

    effect (BJT) and channel-length modulation (MOSFETs) for hand calculations

    s Device Properties: (for simplicity, make all n-channel and all p-channel

    MOSFETs the same dimensions)

    MOSFETs: nCox = 50 AV-2, (W/L)n = (50/2), VTn = 1 V, n = 0.05 V

    -1

    pCox = 25 AV-2, (W/L)p = (80/2), VTp = - 1 V, p = 0.05 V

    -1

    BJTs: on

    = 100, VAn

    = 50 V, op

    = 50, VAp

    = 25 V

    +

    _+

    _

    vs

    VBIAS

    RS

    V+ = + 2.5 V

    Q2

    M4

    Q1

    M3

    M7

    RREF

    M5

    M6

    iout

    RL

    V-= - 2.5 V

  • 8/7/2019 lecture27.fm5

    9/12

    EE 105 Spring 1997

    Lecture 27

    Reference Resistor

    s FindRREFsuch thatIREF= 50 A and then find all node voltages and DC biascurrents ...

    s SubstitutingIREF= -ID3 = 50 A, the source-gate voltage drop is

    s Solve for the reference resistor:

    M3

    RREF

    +2.5 V

    - 2.5 V

    IREF0

    - ID3

    VSG3 VDD IREFRREF VSS=

    +_

    VSG3 VTp

    I

    D3

    W 2L( )( )p

    pC

    ox---------------------------------------------+=

    VSG3

    VSG3 1 V( ) 50 A80

    2 2( )( )---------------- 50 A/V2( )----------------------------------------------------+ 1.22 V= =

    RREF

    VDD

    VSS

    ( ) VSG3

    IREF

    ----------------------------------------------------2.5 V 2. 5 V( ) 1.22 V

    50 A----------------------------------------------------------------- 75.6 k= = =

  • 8/7/2019 lecture27.fm5

    10/12

    EE 105 Spring 1997

    Lecture 27

    DC Operating Point

    s Since width-to-length ratios are identical for n-channel and p-channel devices

    (separately), the DC supply currents are equal to the reference current

    s Neglecting base currents,IC1 = 50 andIC2 = 50

    Q1: gm1 = 2 mS, r1= 50 k, ro1 = 1

    Q2: gm2 = 2 mS, r2= 25 k, ro2 = 500 k

    Source resistances of the current supplies for rst and second stages:

    roc1 = ro4 = (4(-ID4))-1 = (0.05(0.05))-1 = 400 k

    roc2 = ro6 = (6(ID6))-1 = (0.05(0.05))-1 = 400 k

    +

    _+

    _

    vs

    VBIAS

    RS

    V+ = + 2.5 V

    Q2

    Q1

    iout

    RL

    V- = - 2.5 V

    ISUP2 =

    ISUP1 =50 A

    50 A

  • 8/7/2019 lecture27.fm5

    11/12

    EE 105 Spring 1997

    Lecture 27

    Overall Two-Port Model

    s Rin =Rin1 = 50 kandRout=Rout2 = ro2 || roc2 = 500 k || 400 k = 220 k

    s Overall short-circuit transconductance Gm -- must apply procedure

    Find input voltage to the second stage:

    vin2 = - Gm1(Rout1 ||Rin2 ) vin = - gm1 ( ro1 || roc1 || r 2 ) vin

    Output current

    iout= Gm2 vin2 = gm2 [- gm1 (ro1 || roc1 || r2)] vin

    s Overall transconductance:

    Gm = iout/ vin = - gm2gm1 (ro1 || roc1 || r2)

    Gm = - (2 mS)(2 mS)(1 M || 400 k || 25 k) = - (2 mS)(2 mS)(23 k)

    Gm = - 92 mS

    +

    _vin

    Gm2vin2

    Rin2

    +

    _

    vin2

    Gm1vin1

    Rin1

    +

    _

    vin1Rout2Rout1

    iout

    CE (npn) CE (pnp)

  • 8/7/2019 lecture27.fm5

    12/12

    EE 105 Spring 1997

    Lecture 27

    Output Voltage Swing

    s Find the maximum and minimum values ofvOUT

    s

    Determine how high the output node can rise before a device leaves its constant-current region

    Q2 saturates when vOUT= VOUT(max) = 2.4 V ... VEC(sat) = 0.1 V

    Note thatM4 is still saturated since VSD4 = VEB4 = 0.7 V >vSG4 + VTp = 0.22 V

    s Determine how low the output node can drop ...

    M6goes triode when vOUT= VDS7(sat) = VGS7 - VTn = 1.22 V - 1 V = 0.22 V

    VOUT(min) = - 2.5 V + 0.22 V = 2.23 V

    +

    _VBIAS

    Q2

    M4

    Q1

    M3

    M7

    RREF

    M5

    M6

    vOUT

    V-= - 2.5 V

    V+= 2.5 V