Lecture_2008_3

download Lecture_2008_3

of 17

Transcript of Lecture_2008_3

  • 8/9/2019 Lecture_2008_3

    1/17

    Nuclear Fission

    Thermal neutron fission of 235U forms compound,

    yielding over 80 primary fission fragments (products).

    92 0 37 55 0

    235 U + 1 n 87 Br + 146 La + 31 n

    23592U +

    10n

    7230Zn +

    16062Sm + 4

    10n

    The fission yield is defined as the proportion(percentage) of the total nuclear fissions that form

    1Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    .for fast.

    1Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    2/17

    Nuclear Fission

    emem er neu ron excess. (A,Z) (A,Z+1) or (A-1,Z).

    Only leftside of the

    mass

    Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    2

    parabola.

  • 8/9/2019 Lecture_2008_3

    3/17

    Nuclear Fission

    235U+ n 93Rb + 141Cs + 2n

    =

    165 MeVaverage kinetic

    What if other fragments? Different number of neutrons.

    energy carriedby fission

    a e e as a represen a ve va ue.

    fission.

    e e

    Heavyfragments

    Lightfragments

    3

    miscalibratedNuclear Reactors, BAU, 1st Semester, 2008-2009

    Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    4/17

    Nuclear Fission

    neutronsemitted er

    fission. depends

    nuclide and

    on neutronenergyinducingfission.

    Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    4

  • 8/9/2019 Lecture_2008_3

    5/17

    Nuclear Fission

    Mean neutron energy 2MeV.

    2.4 neutrons per fission(average) 5 MeV

    carried by prompt neutrons

    per fission.

    Show that the average momentum carried by a neutron is only

    . a carr e y a ragmen . Thus neglecting neutron momenta, show that the ratio betweenkinetic energies of the two fragments is the inverse of the ratio of

    5

    their masses.

    1

    2

    2

    1

    m

    m

    E

    E

    14095

    98

    66Nuclear Reactors, BAU, 1st Semester, 2008-2009

    Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    6/17

    Nuclear Fission

    Distribution of fission energyEnge

    Kranesums

    them up

    as decays.

    Lost !

    6Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    7/17

    Nuclear Fission

    Segr Distribution of fission energy

    Lost !

    a

    bc

    How much is recoverable?How much is recoverable? What about capture gammas?What about capture gammas? (produced by(produced by --1 neutrons1 neutrons))

    7

  • 8/9/2019 Lecture_2008_3

    8/17

    Nuclear Fission

    and emissions fromradioactive fissionproducts carry part

    energy, even after

    shut down. ,and half-life increases. Long-lived isotopes constitute the mainhazard.

    an nter ere w t ss on process n t e ue . Example?Example? (poisoning).(poisoning). Important for research.

    -deca favors hi h ener ~20 MeV com ared to ~6 MeV for .

    8Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    Only ~ 8 MeV from -decay appears as heat. Why?Why?

  • 8/9/2019 Lecture_2008_3

    9/17

    Nuclear Fission

    -f

    , Z

    i

    A, Z-1

    k

    A-1, Z

    j

    -

    n,

    A, Z+1A+1, Z

    ,

    dNi/dt = Formation Rate - Destruction rate - Decay Rate

    iiiikkjjffii NNNNN

    dt ++=

    9Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    i sa ura es an s g er w g er neu ron ux, arger ss on y e an

    longer half-live.

    9Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    10/17

    Nuclear Fission

    HW 7HW 7

    Investigate the activity, decay and gammaenergies of fission products as a function of time.

    idN

    Comment on consequences (e.g. rod cooling).

    iikkdt

    =

    HW 8HW 8

    giving full description for the buildup and decay ofiikk iikk

    10Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    10Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    11/17

    Nuclear Fission

    sMeVTttxtP /)(101.4)( 2.02.011 +=.

    T= time of operation.

    Fission

    productac v yafter

    shutdown?

    11Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    11Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    12/17

    Nuclear Fission

    The fission gamma radiation.

    energy of 0.9 MeV. dela ed ammas.

    Investigate how promptInvestigate how prompt

    HW 9HW 9

    gammas interact withgammas interact withwater, uranium and lead.water, uranium and lead.

    12Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    12Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    13/17

    Nuclear Fission

    EeEE 29.2sinh453.0)( 036.1=HW 10HW 10

    The experimental

    neutrons is fitted by

    the above equation.Calculate the meanand the most

    pro a e neu ronenergies.

    Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    13

  • 8/9/2019 Lecture_2008_3

    14/17

    Nuclear Fission

    Recoverable energy release 200 MeV per 235Ufission. Fission rate = 2.7x1021P fissions er da .P in MW.

    3.12x1016

    fissions per second per MW, or 1.2x10-5

    gram of235

    Uper second per MW (thermal). . . .

    The fissioning of 1.05 g of 235Uyields 1 MWd of energy.

    Specific BurnupSpecific Burnup = 1 MWd / 1.05 g 950000 MWd/t (pure(pure 235235U !!).U !!).Fractiona BurnupFractiona Burnup = Thermal reactor loaded with 98 metric tons of UO2, 3% enriched,o erates at 3300 MWt for 750 da s.

    c ua y muc ess.c ua y muc ess.

    86.4 t U. Specific burnup 28650 MWd/t. Not all fissions from 235U. 238

    14Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    . 238Uconverted to plutonium more fission.

  • 8/9/2019 Lecture_2008_3

    15/17

    Nuclear Fission

    )(EE

    = Ca ture-to-fission ratio:

    )(Ef

    Consumption rateConsumption rate: 1.05(1+) P g/day.

    Read all relevant material in LamarshRead all relevant material in LamarshCh. 4. We will come back to this later.Ch. 4. We will come back to this later.

    Two neutrinos are expected immediately from thedecay of the two fission products, what is the minimum

    Nuclear Reactors, BAU, 1st Semester, 2008-2009Saed Dababneh .

    15

    ux o neutr nos expecte at 1 m rom t e reactor.

    4.8x1012 m-2s-1

  • 8/9/2019 Lecture_2008_3

    16/17

    Nuclear Fission

    3.1x1010 fissions per second per W.

    In thermal reactor, majority of fissions occur inthermal energy region, and are maximum. v u

    V Thermal reactor powerThermal reactor power (quick calculation)(quick calculation)

    Pf

    th =

    16Nuclear Reactors, BAU, 1st Semester, 2007-2008Saed Dababneh .

    . x16Nuclear Reactors, BAU, 1st Semester, 2008-2009

    Saed Dababneh .

  • 8/9/2019 Lecture_2008_3

    17/17