Lecture20-Nov30

21
8/10/2019 Lecture20-Nov30 http://slidepdf.com/reader/full/lecture20-nov30 1/21 Objectives/outcomes: You will learn the following:  particle and ber reinforcement.  Various types of bers  Unidirectional   Rule of mixture.  Strength of ber composites MSE200 Lecture 20(CH. 12.1-12.3) Composite Materials Instructor: Yuntian Zhu

Transcript of Lecture20-Nov30

Page 1: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 1/21

Objectives/outcomes: You will learn the following:

• particle and fiber reinforcement.

•  Various types of fibers 

•  Unidirectional 

• 

Rule of mixture.• Strength of fiber composites 

MSE200Lecture 20(CH. 12.1-12.3)

Composite Materials

Instructor: Yuntian Zhu

Page 2: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 2/21

Introduction

•  A composite material is

•  Properties of composite materials can be superior to itsindividual components.

•  Examples: 

Page 3: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 3/21

Two types of composite materials 

• 

Classified according to the reinforcements –   Particle reinforced composites

•  Examples:

 –   Fiber reinforced composites

•  Examples:

Page 4: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 4/21

Glass Fibers for Reinforced Plastic Composite Materials

•  Glass fiber reinforced plastic composite materials have

high strength-weight ratio, good dimensional stability,

good temperature and corrosion resistance and low

cost.

  ‘E’ Glass : 52-56% SiO2, + 12-16% Al2O3, 16-25%

CaO + 8-13% B2O3

  Tensile strength = 3.44 GPa, E = 72.3 GPa

  ‘S” Glass : Used for military and aerospace

application.

 65% SiO2 + 25% Al

2O

3 + 10% MgO

  Tensile strength = 4.48 GPa, E = 85.4 GPa

Page 5: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 5/21

Production of Glass Fibers

•  Produced by drawing monofilaments from a furnace

and gathering them to form a strand.

Low cost and hencecommonly used.

http://www.google.com/search?q=glass+fiber+drawing&tbo=p&tbs=vid%3A1&source=vgc&hl=en&aq=f  

Page 6: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 6/21

Glass fiber products

http://video.google.com/videosearch?hl=en&q=glass%20fiber%20composite&gbv=2&ie=UTF-8&sa=N&tab=iv#hl=en&q=glass+fiber+composite&gbv=2&ie=UTF-8&sa=N&tab=iv&start=0 

Page 7: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 7/21

Carbon Fibers for Reinforced Plastics

•  Light weight, very high strength and high stiffness.

•  7-10 micrometer in diameter.

• 

Produced from polyacrylonitrile (PAN) and pitch.•  Steps:

 Stabilization: PAN fibers are stretched and oxidised in air

at about 2000C.

 Carbonization: Stabilized carbon fibers are heated in inertatmosphere at 1000-15000C which results in elimination of

O,H and N resulting in increase of strength.

 Graphitization: Carried out at 18000C and increases

modulus of elasticity at the expense of strength

•  Tensile strength = 3.1-4.45 GPa, E = 193-241 GPa,

density = 1.7-2.1 g/cc.

The highest strength: 6.9 GPa, by Toray

Page 8: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 8/21

Page 9: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 9/21

Aramid Fibers (Kevlar) for Reinforcing Plastic Resins

•  Aramid = aromatic polyamide fibers.

• 

Trade name is Kevlar

 Kevlar 29:- Low density, high strength, and used for ropes and cables.

 Kevlar 49:- Low density, high strength and modulus and used foraerospace and auto applications.

• 

Hydrogen bonds bond fiber together.

• 

Used where resistance to fatigue, high

strength and light weight is important.

Page 10: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 10/21

Kevlar fiber products

http://video.google.com/videosearch?q=kevlar&hl=en&emb=0&aq=f# 

Page 11: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 11/21

Comparison of Mechanical Properties

•  Glass fibers are cheap, for cheap civilian products

• 

Carbon fibers are strong but brittle, high strength structure

•  Kevlar fibers are toughest, for body armor.

Page 12: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 12/21

Fiber frontier: Carbon nanotube (CNT) fiber

Commercial

LANL CNT fiber

Page 13: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 13/21

CNT fiber

Ribbons being pulled from array 

Example of spun CNT fiber 

Page 14: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 14/21

Page 15: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 15/21

Fiber Reinforced-Plastic Composite Materials

•  Fiberglass-reinforced polyester resins:

 Higher the wt% of glass, stronger the reinforcedplastic is.

 Nonparallel alignment of glass fibers reducesstrength.

•  Carbon fiber reinforced epoxy resins:

 Carbon fiber contributes to rigidity and strength while epoxy matrix contributes to impactstrength.

 Polyimides, polyphenylene sulfides are also used.

 Exceptional fatigue properties. Carbon fiber epoxy material is laminated to

meet strength requirements.

Page 16: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 16/21

Properties of Fiber Reinforced Plastics

Fiberglass polyester

(Carbon fibers and epoxy)

Page 17: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 17/21

Rule of Mixture (isostrain condition)

• 

Stress on composite causes uniform strain on all composite layers.

Pc = Pf  + Pm

 = P/A

cAc = f Af  + mAm

Pc = Load on composite

Pf = Load on fibers

Pm = load on matrix

Rule of mixture of binary composites

Ec = Ef Vf  + EmVm

c = f Vf  + mVm

c = f Vf  + mVm

Page 18: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 18/21

Page 19: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 19/21

Isostress Condition

• 

Stress on the composite structure produces an equal stress conditionon all the layers.

c = f  = m

Assuming no change in area

and assuming unit length of the composite

c = f Vf  + mVm

Therefore

m

m

 f 

 f 

c

c E  E  E 

  

 

  

 

  

    ===   ,,

  

 E c=

  V  f 

 E  f +

  V m

 E m

1

 E c=

V  f 

 E  f +V m

 E m

Page 20: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 20/21

Toughening Mechanisms in Composite Materials

•  Toughening is due to fibers interfering with crack

propagation.

 Crack deflection: Up on encountering reinforcement,

crack is deflected making propagation more

meandering.

 Crack bridging: Fibers bridge the crack and help to

keep the cracks together.  Fiber pullout: Friction caused by pulling out the fiber

from matrix results in higher toughness.

Page 21: Lecture20-Nov30

8/10/2019 Lecture20-Nov30

http://slidepdf.com/reader/full/lecture20-nov30 21/21

HW

• 

Examples problems in Chapter 12: 12.1, 12.2, 12.3