Lecture1(Stress Strain MohrCircle FEM)

download Lecture1(Stress Strain MohrCircle FEM)

of 82

Transcript of Lecture1(Stress Strain MohrCircle FEM)

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    1/82

    Lecture 1

    Stress and Small (Infinitesimal) Strain

    Finite Element Method

    Mohr Circles

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    2/82

     zz zy zx

     yz yy yx

     xz xy xx

       

       

       

     

    Representation of 9 stress components in a

    Cartesian Coordinate

    If the body is in equilibrium, then there is only

    6 independent stress components

     zx xz zx

     yz zy yz

     xy yx xy

       

       

       

     zz yz xz

     yz yy xy

     xz xy xx

       

       

       

     

    Stress

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    3/82

    If there is no shear stress on a surface, then the traction vector (think of it as a force vector) must

     be parallel to the unit normal vector .

    T n̂

    multiplier scalar aiswherennT    T      ˆˆ   Rearranging this equation

      matrixidentityanis I wheren I  0ˆ      

    From linear algebra, the condition for the existence of a unique solution is   0det     I   If we expand the determinant of this equation, we find the characteristic equation (an eigenvalue problem)

    0322

    1

    3   I  I  I       

    ˆˆ

    3

    2

    1

    n

    n

    n

     zz yz xz

     yz yy xy

     xz xy xx

        

            

    If we substitute each of to replace , we can solve for the corresponding eigenvectors321 ,,           321 ˆ,ˆ,ˆ   nnn

    1ˆˆˆ2

    3

    2

    2

    2

    1     nnn

     zx yz xy z y xT          ,,,,,

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    4/82

    4

     

     

     

     

     

     

     

     

    400

    065

    058

     zz yz xz

     yz yy xy

     xz xy xx

       

       

       

    022   xy yy xx p yy xx p          

     MPa

     MPa

     MPa

     xy yy xx yy xx

    4

    90.15684

    168

    2

    1

    10.125684

    168

    2

    1

    5684168

    21

    4

    1

    2

    1

    3

    2

    1

    22

    2

    2

    1

    22

    1

    2

    1

    22

    2,1

    2

    1

    22

    2,1

     

     

     

     

          

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    5/82

    1 If we substitute

    ˆˆ

    1

    1

    1

    1

    1

    1

     z

     y

     x

     zz yz xz

     yz yy xy

     xz xy xx

    n

    nn

        

            

    2221

    2221

    2221

    ˆ

    ˆ

    ˆ

    C  B A

    C n

    C  B A

     Bn

    C  B A

     An

     z

     y

     x

    1

    1

       

       

     zz yz

     yz yy A

    1   

      

     zz zx

     yz xy B

     yz zx

     yy xy

    C    

        1

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    6/82

    6

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    7/82

    Y  x A   General Equation Constituting an Eigenvalue ProblemIf = eigenvalues, then this equation becomes:

     x x A    This equation is known as eigenvector equation and it can be represented by the

    following homogeneous equations:

    rseigenvectoasknownarefor solution10

    01e.g.matrixidentity

    0

     x

     I 

     x I  A

     

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    8/82

    thereforezero,notissince   x

    0

    .

    ....

    .

    .

    21

    22221

    11211

     

     

     

     

    nnnn

    n

    n

     A A A

     A A A

     A A A

     I  A

    This equation is known as the characteristic equation:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    9/82

     

    81

    24 A

    0

    81

    24

     

     

    03012

    01x284

    2

      

      

    or 

    551.3

    449.8

    arerootsor seigenvalueThe

    2

    1

     

     

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    10/82

    To determine the eigenvectors, substitute the eigenvalues into the equation:

      08124

    2

    1

    2

    1

     x

     x

     

     

    which gives an eigenvector corresponding to eigenvalue 1 of 8.449:

      0449.881

    2449.84

    2

    1

     x

     x

    1

    45.0

    2

    1

     x

     x

    and an eigenvector corresponding to the second eigenvalue 2 of 3.551:

      0551.381

    2551.34

    2

    1

     x

     x

    225.0

    1

    2

    1

     x

     x

    The matrix A is said to be positive-definite, as both its roots are positive.

    For nth order matrix, it would involve polynomial of the nth degree

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    11/82

    First Invariant (independent of coordinate system) of Stress Tensor

    Second Invariant of Stress Tensor

    Third Invariant of Stress Tensor

     z y x I          1

     

    222222222

    1

    2

    1 zx yz xy z y x z y x I             

    222

    3 2  xy z xz y yz x zx yz xy z y x I                  

    Second Invariant of Deviatoric Stress Tensor

        22222222222226

    1

    2

    1 zx yz xy z x z y y x zx yz xy z y x   sss J                  

    Third Invariant of Deviatoric Stress Tensor

    1

    222

    3

    3

    1

    2

     I swhere

    ssssss J 

    ii

     xy z xz y yz x zx yz xy z y x

     

          

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    12/82

    300

    00

    001 I 

    m

    m

    m

    m  

     

     

     

     

    Deviator Stress

    Hydrostatic Stress

    m zz yz xz

     yzm yy xy

     xz xym xx

        

        

        

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    13/82

    Stress Vector zx yz xy z y x

    T          ,,,,,

    Deviatoric Stress Vector3

    1

    mI s    

    Vector Equivalent of the

    Kronecker Delta 0,0,0,1,1,1T m

    Displacement Vector u

    Strain Vector   zx yz xy z y x

    T          ,,,,,

    Deviatoric Strain Vector

    3volme

         

    Octahedral Normal Stress31 I oct   

    Octahedral Shear Stress2

    3

    2 J oct   

    Volumetric Strain  z y xvol         

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    14/82

    0

    0

    0

     Z  z y x

     z y x

     X  z y x

     zz yz zx

     yz yy xy

     zx xy xx

       

       

       

    Differential Equation of Equilibrium in Cartesian Coordinate

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    15/82

    Small Strain

     zz zy zx

     yz yy yx

     xz xy xx

     z z z

     y y y

     x x x

     z

    u

     y

    u

     x

    u

     z

    u

     y

    u

     x

    u

     z

    u

     y

    u

     x

    u

    u

       

       

       

    Representation of 9 strain components in a

    Cartesian Coordinate

    For symmetry reasons, then there is only 6

    independent strain components

     

     

     

     

      

      

     

      

     

     z

     x

     x

     z xz zx

     y

     z

     z

     y zy yz

     x

     y

     y

     x yx xy

    uu

    uu

    uu

    2

    1

    21

    2

    1

      

      

       Shear Strain

     Normal Strain

    Compatibility of Strain to ensure

    that a single valued displacement

    can be found from integrating the

    strain

     z x z x

     z y y z

     y x x y

     xz xx zz

     yz zz yy

     xy yy xx

       

       

       

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

     y z x z z y x

     x y z y y x z

     z x y x x z y

     zx yz xy zz

     yz xy zx yy

     xy zx yz xx

        

        

        

    22

    2

    22

    22

    2

    22

    22

    2

    22

     xy xy     2

    1

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    16/82

    Deviator Strain

    3

    3

    3

    v zz yz zx

     yzv yy xy

     zx xyv

     xx

    dev

        

      

      

       

     

     

     zz yy xxv         Volumetric Strain

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    17/82

    Stress-Strain Relationship

         DElasticity Matrix

     zx

     yz

     xy

     zz

     yy

     xx

     zx

     yz

     xy

     zz

     yy

     xx

     E 

      

     

     

     

     

     

     

     

      

     

     

     

     

     

      

      

     

     

     

     

      

     

      

     

     

     

     

    )1(2

    )21(00000

    0)1(2

    )21(0000

    00

    )1(2

    )21(000

    0001)1()1(

    000)1(

    1)1(

    000)1()1(

    1

    )21)(1(

    )1(

    )1(2    

      E G

    Young’s ModulusShear Modulus

    Poisson’s ratio

    Lame’s Constant

    )21)(1()21(

    2

      

     

     

     

     

      E G

    Isotropic Material

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    18/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    19/82

    Transverse Isotropic Material E.g., Shale

     zx

     yz

     xy

     zz

     yy

     xx

     zx

     yz

     xy

     zz

     yy

     xx

    G

     E G

     E 

     E 

     E 

     E 

      

     

     

      

     

        

      

      

     

     

      

    2

    1

    2

    1

    1

    2

    122

    21

    21

    1

    00000

    00000

    00)1(2000

    0000001

    0001

    1 isotropyof  planethetonormalProperties

    isotropyof  planetheinProperties

    2

    1

     E 

     E 

     zx

     yz

     xy

     zz

     yy

     xx

     zx

     yz

     xy

     zz

     yy

     xx

    nm

    nm

    nn

    nnn

    nnnnn

    n

     E 

     

     

     

     

     

     

       

       

      

     

       

         

       

     

     

     

     

     

     

    )21)(1(00000

    0)21)(1(0000

    00)21(2

    1000

    000)1(

    000)1()1(

    000)1()()1(

    )21)(1(

    2

    211

    2

    211

    2

    21

    2

    1

    12

    22

    2

    12

    22

    21

    2

    2

    2

    211

    2

    m E 

    G

    n E 

     E 

    2

    2

    2

    1

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    20/82

    Plane Stress Problem: Thin Plate Plane Strain Problem: Tunnel, Retaining Wall

    000

    0

    0

     yy yx

     xy xx

      

      

     

    000

    0

    0

     yy yx

     xy xx

      

      

     

     yy xx xx xxG

            2

    1

    G

     xy

     xy2

        

     yy xx yy yyG

            2

    1

     yy xx zz         

     xy

     y

     x

     xy

     yy

     xx

    G

     E  E 

     E  E 

     

     

      

     

     

     

     

    100

    01

    01

     

     

     

     

     xy

     yy

     xx

     xy

     yy

     xx E 

     

     

     

     

     

     

      

     

     

    2100

    01

    01

    1 2

     

     

     

     

     

     xy

     yy

     xx

     xy

     yy

     xx E 

     

     

     

       

      

       

     

     

    2

    2100

    01

    01

    211

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    21/82

    Principal Stress Space and Yield Criterion

    3

    1cos 0   All principal stresses are the same (isotropic stress)

    Principal stresses are not the same (general condition)

     E F  D

      nnn ˆ,ˆ,ˆThree orthogonal Unit vector along the stress path plane 

    1

    1

    1

    3

    1 ̂Dn

    1

    1

    0

    2

    1 ̂E n

    1

    1

    2

    6

    1ˆF n

     planeon       planeon    Along diagonal

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    22/82

    The components of stresses in the D, E and F directions are given by

    the inner products of stresses with the three unit vectors:

      p D 33

    1321         

    322

    1       E 

    32126

    1       F 

    Mean stress31 I  p 

      qF  E 3

    2

    3

    22

    1

    133221

    2

    3

    22

    21

    2

    122              By Pythagorean Theorem,

    Or the deviatoric stress q is

    2

    1

    2

    2

    1

    2

    12

    13

    2

    32

    2

    21

    2

    1

    133221

    2

    3

    22

    21

    3

    )()()(2

    1

     I  I q

    q

    q

          

             

    Lode Angle

    23

    321

    3

    2tan

      

       

     

      

     E 

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    23/82

    Yield Criterion for Metal (Tresca in 1864)

    )(31   metal for  failureat stresstensileT      

      T F  E          223 31  

    Yield Criterion for Metal (Von Mises in 1913)

    Equation of a circle

    stressYield  AxialY 

     

           2

    13

    2

    32

    2

    21

    22

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    24/82

    Mohr Coulomb Yield Criterion (1773)

           cos2

    131

             sin2

    1

    2

    13131  

            cos2sin1sin1 31   c

    321         For 

     planetheat  Looking    

    F  D       3

    2

    3

    11  

    F  E  D       6

    1

    2

    1

    3

    12  

    F  E  D        6

    1

    2

    1

    3

    13  

    Irregular Hexagonal Shape

    321         For              sin22cos62sin3sin13  DF  E    c  

    The size of the yield surface depends upon

     pstressmeanand  D 

    Perspective View

    Triaxial CompressionTest

    Triaxial Extension

    Test

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    25/82

     Normally, Mohr-Coulomb Yield Criterion is expressedin 3-D stress space as:

    0cos3

    sinsincos

    3

    sin21  

     

      

         

       

     c J  I F 

      =Lode Angle

           6

    2

    333sin

    2

    3

    2

    3   with

     J 

     J 

    Lode Angle

    23

    321

    3

    2tan

      

       

     

      

     E 

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    26/82

    Drucker-Prager Yield Criterion (1952)

    Difficult representation

    in Sharp Corner 

    1. Modify Von Mises Yield Criterion so that

     

     

     

     

    sin3

    cos6

    sin3

    sin6

      c pq

     Normally, Drucker-Prager Yield Criterion is

    expressed in 3-D stress space as:

    012     k  I  J F     

     

    relates to frictional component of shearing resistance

    relates to cohesion component of shearing resistance

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    27/82

    2. Modify Mohr Coulomb Yield Criterion by Lade and Duncan (1975) for cohesionless soil (c=0)

    constantmaterialais3

    321           where p

    32222)1(2)3(2)(3

     DF  E F F  E  D            

    3

    3

    2

    2

    )sin3(

    sin16

    )sin3(

    sin12

    1  

     

     

     

      where

    3. Modify Mohr Coulomb Yield Criterion by Matsuoka and Nakai (1974) for cohesionless soil (c=0)

    constantmaterialais)( 133221321                 where p  

    0)()1(23)31(226222323   F  E  D DF  E F             

       

        

    32

    32

    sinsinsin99

    )sinsinsin1(3

    where

    0

    3

    21

     

     

     

     

     

    K F 

     I 

     I  I 

     Normally, Matsuoka and Nakai Yield Criterion

    is expressed in 3-D stress space as:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    28/82

           d r d r  r r  111 )()(

    1sideonForceRadial

           d r d r  r r  333 )()(

    3sideonForceRadial

    )2

    ()()2

    sin()()(

    2sideonForce Normal

    2312

      

         

    d dr 

    d r r   

    )

    2

    ()()

    2

    sin()()(

    4sideonForce Normal

    4314

      

         

    d dr 

    d r r   

    dr 

    r  2)(

    4sideonForceShear 

      

    dr r  4)(2sideonForceShear 

      

    Concept of Stress and Strain in

    Plasticity

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    29/82

    direction)tangential(involumeunit per componentforce body

    direction)radial(involumeunit per componentforce body

     R

    directionradialinforceEquation of Equilibrium

    02

    )(2

    )()()(

    42

    4231

    dr  Rrd dr 

    d dr 

    d dr d r d r 

    r r 

    r r 

       

      

          

      

      

    Divide both sides by  drd 

     

    0)()(

    2

    1)()( 4242

    31

     Rr 

    d dr 

    r r    r r r r 

     

        

             

    r r 

    )( 

    Area gets smaller

    to the limit

      

     

       

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    30/82

    Divide the equation by r 

     

    0)()(2

    1)()( 4242

    31

     Rr d dr 

    r r    r r r r 

     

        

             

    01

     Rr r r 

    r r r           

     

      

    0

      Rr d 

     

       

    r r r r r 

    r  

        

    )()(

        

    r r 

    Expand by product rule

    Similarly the equation of equilibrium in the tangential direction

    021

    S r r r 

    r r            

     

     

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    31/82

    01  R

    r r r r r r           

       

    021

    r r r 

    r r            

     

     

    Differential equation of equilibrium in Polar Coordinate

    0 X 

     y x xy x     

    Differential equation of equilibrium in Cartesian Coordinate

    0

     x y

     xy y     

    Make use of Airy stress function to find the elastic stress distribution of a circular hole in an

    infinite medium under isotropic stress condition

    o

    i

    P

    P

    PressureExternal

    PressureInternal

    Differential equation of equilibrium in Cartesian Coordinate

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    32/82

    0

     X  y x

     xy x    

    q q

    0

    Y  x y

     xy y     

    For no horizontal acceleration, X=0 Body force is simply the weight of the body   g  

    0

     y x

     xy x      0

    g

     x y

     xy y     

    Also need the Compatibility Equations in terms of Stresses

     x

    u x

     

    Components of Strain

     y

    v y

     

     x

    v

     y

    u xy

     

    Differentiate twice w.r.t. yDifferentiate twice w.r.t. x Differentiate w.r.t. x and then y

     y x x y

     xy y x

          2

    2

    2

    2

    2

    Arrive the Compatibility Equation in terms of Strain

    Use Hook’s Law to transform into Compatibility Equation in terms of Stress

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    33/82

    p y q

    )(1  y x x E 

          )(1  x y y E 

            xy xy xy

     E G     )1(21  

     y x x y

     xy x y y x

        

         2

    2

    2

    2

    2

    )1(2)()(

    Substitute into the compatibility equation, we get:

    0

     y x

     xy x    

    0

    g

     x y

     xy y  

      

     Next, to differentiate the equilibrium equation

    Differentiate w.r.t. x

    Differentiate w.r.t. y and then add the

    two equations and it becomes:

    2

    2

    2

    22

    2  y x y x

     y x xy

         

    For Plane Stress Condition:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    34/82

    The Compatibility Equation in terms of Stresses is obtained by substituting

     back into

     y x x y

     xy x y y x

        

         2

    2

    2

    2

    2

    )1(2

    )()(

    2

    2

    2

    22

    2 y x y x

     y x xy

         

    )1()()(

    2

    2

    2

    2

         

     x y

     x y y x )(2

    2

    2

    2

     y x

     y x

        

    )1(2

    2

    2

    2

    2

    2

    2

    2

           

     x x y y

     x y y x)(

    2

    2

    2

    2

     y x

     y x

        

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

    2

     y x y x x x y y

     y x y x x y y x

                  

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    35/82

    02

    2

    2

    2

    2

    2

    2

    2

     y x x y

     y x y x      

    02

    2

    2

    2

     

     

     

     

     y x y x

       The Compatibility Equation in terms of StressesFor Plane Stress Condition:

    The Compatibility Equation in terms of Stresses for Plane Stress Condition

    including body forces are similarly derived and given as follows:

        

      

      

      

     y

     x

     X 

     y x  y x       12

    2

    2

    2

    F Pl S i C di i

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    36/82

    For Plane Strain Condition:

       y x x  E           111 2

     xy xy xy E G

      

      )1(21  

       x y y E 

             111 2

    02

    2

    2

    2

     

      

     

     y x y x

       The Compatibility Equation in terms of StressesFor Plane Stress Condition also the same for

    Plane Strain Condition

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    37/82

    The Compatibility Equation in terms of Stresses for any general case with

     body forces are similarly derived as follows:

     

      

     

     

      

     

     y

     x

     X 

     y x  y x

       

    1

    12

    2

    2

    2

    The usual method of solving both the equilibrium and compatibilityequations is to introduce a new stress function (introduced byAiry in 1862, that is why call Airy Stress Function)

    0

     y x

     xy x    

    0

    g x y

     xy y

      

      

    For the equilibrium equations

    to be satisfied, it has been shown that the new stress function must also satisfy the following expressions for the stress

    components:

    gy x

     y     

       

    2

    2

    gy y

     x     

       

    2

    2

     y x xy

       

     2

    S b tit t th i 22 2

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    38/82

    Substitute these expressions

    into the Compatibility equation

    gy x

     y     

       

    2

    2

    gy y

     x     

       

    2

    2

     y x xy

       

     2

    02

    2

    2

    2

     

      

     

     y x y x

      

    The stress function must also satisfy the following expressions:

    024

    4

    22

    4

    4

    4

     y y x x

       

    If this stress function can be satisfied, then the equilibriumequation and compatibility equation will also be satisfied .

    Thus, the solution of many 2D problems (including body

    forces) can be derived by finding a solution which satisfy thestress function incorporating the boundary conditions.

    Th t f ti ( ith t b d f ) i l di t

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    39/82

    The stress function (without body force) in polar coordinatesmust also satisfy the following expressions for the stress

    components:

    2

    2

    2

    11

     

       

    r r r 

    r  2

    2

       

          

      

     

     

     

     

     

     

        

    r r r r r r 

    111 2

    2

    The Compatibility Equation in terms of Stresses in polar coordinates is:

    01111

    2

    2

    22

    2

    2

    2

    22

    2

     

     

     

     

     

     

     

     

     

       

        r r r r r r r r 

    St Di t ib ti S t i l b t A i

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    40/82

    Stress Distribution Symmetrical about an Axis

    The Compatibility Equation in terms of Stresses in polar coordinates, when the Stress Function depends on r only, is:

    01111

    2

    2

    22

    2

    2

    2

    22

    2

     

      

     

     

      

     

     

       

        r r r r r r r r 

    011211

    32

    2

    23

    3

    4

    4

    2

    2

    2

    2

     

      

     

     

      

     

    dr 

    r dr 

    r dr 

    r dr 

    dr 

    r dr 

    dr 

    r dr 

    d          

    Which is an ordinary differential equation, which can be reduced to a linear differential equation with constant

    coefficients by introducing a new variable t such that

    The solution has four constants of integration, which must be determined from the boundary conditions.

    t er  

    Assume the stress function to be in the form as:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    41/82

    Assume the stress function to be in the form as:

    The corresponding stress function without body force is obtained:

     DCr r  Br r  A   22

    loglog 

    C r  Br 

     A

    r r r  2)log21(

    12  

        

    2

    2

         

    0  r 

    2

    2

    2

    11

     

       

    r r r r 

    C r  B

     A2)log23(

    2    

     

      

     

     

        

    r r r 

    1

    0 BFor  The solution becomeswhich may be used to represent the stress

    distribution in a hollow cylinder subjected to

    uniform pressure on the inner and outer surfaces

    C r 

     Ar  22     C r 

     A 22   

    Apply the boundary conditions: pp

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    42/82

    Apply the boundary conditions:   obr r iar r    p p         

    C r 

     Ar  22  

    ir    pC 

    a

     A 2

    or    pC 

    b

     A 2

    From which,

    22

    22

    ab

     p pba A   io

    22

    22

    2ab

    b pa pC    oi

    C r 

     Ar  22     C r 

     A2

    2   and substitute back into the equation

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    43/82

    22

    22

    222

    22 1

    ab

    a pa p

    r ab

     p pba oiior 

     

    22

    22

    222

    22 1

    ab

    a pa p

    r ab

     p pba oiio

      

    To find the radial displacement, use          r uor 

    r u

    r  E             For Plane Stress Condition

    112 234 dddd

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    44/82

    0112

    32234

    dr 

    r dr 

    r dr 

    r dr 

    d check 

          

     DCr r  Br r  A   22 loglog 

     DCr r  A   2log 

    Cr r 

     Adr 

    d 2

    1

     C 

    r  A

    dr 

    d 2

    122

    2

     

    33

    3 12

    r  A

    dr 

     44

    4 16

    r  A

    dr 

     

    4

    16

    r  A

    3

    12

    2

    r  A

    r  )2

    1(

    122  C r 

     Ar 

    0)21

    (1

    3    Cr 

    r  A

    416r 

     A 414 r  A   C r r 

     A 211 24  0121 24   r C 

    r  A

    4

    16

     A 01

    64 

     A

    Derivation of Elasto-Plastic Solution to compute radial crown displacement of a tunnel under plane

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    45/82

    Derivation of Elasto Plastic Solution to compute radial crown displacement of a tunnel under plane

    strain, homogeneous, isotropic stress condition for c’ and ’ material

    er 

    i p o pa

    o p

    2

    r hi h i th di l

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    46/82

     

      

     r 

    r  p p   er oorr  e  

    which is the radial

    stress in the elastic

    zone

    2

      

     

    r  p

     E r 

    u er o

     which is the elastic radial displacement

    For the stresses in the plastic zone, needs to use the Mohr-Coulomb failure criterion

    r  N 

     

      

    sin1

    sin1

    12

    )1(

    2)1(

     

     

     

     

     N 

     N c

     N 

     N c

     pa

    r    r r i

     N 

    rr  

     

     

      

     

    which is the radial stresses

    in the plastic zone

      r r r r i N 

    rr    cc pa

    r    r 

       

     

    cotcot

    )1(

     

      

     

    which is the radial stressesin the plastic zone

    sin1

    i1

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    47/82

         

     

        

    cossin1

    sin1

    sin1cossin1

    c p

    c p

    or 

    or 

    e

    e

     

      

     

    which is the radial stress at

    the elastic-plastic boundary

    Plastic radius1

    cot

    cotcos)sin1(ln

      r r r i

    r r o

     N 

    c p

    cc p

    e   aer    

     

       

       cos)sin1(   c p p oicrit  which is the critical internal

    support pressure

    Concept of Stress and Strain in Finite Element Formulation

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    48/82

    Plasticity is concerned with predicting the maximum loading which can be

    applied to a body without causing:

    •Excessive Yield 

    •Flow

    •Fracture

    Plasticity Rule is based on 3 assumptions:

    1. The yield criterion (F), represented by a surface in the stress space,

    at which plastic deformation may develop

    2. The hardening law (h being a hardening parameter), that governs the

     possible changes in shape, size and position of the yield surface with

    an increase in plastic strains

    3. The plastic flow rule governing the increment of the plastic strains

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    49/82

    For elasto-plastic materials undergoing infinitesimal deformation,

    Total strain increment = Elastic strain increment + Plastic strain increment

     plel d d d          The elastic strain component can be represented using the generalized Hooke's law:

    D = Elastic Constitutive Modulus

    Plastic strains are irreversible

     plel

    d d  D Dd d          

    1st assumption in Plasticity Rule:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    50/82

    The yield criterion (F), represented by a surface in the stress space, at

    which plastic deformation may develop

     plhF F      ,

    h is the vector of the hardening parameters governing the changes of the yield surface with

    increasing plastic strains

    If F < 0 , material is elastic (stress state within the yield surface)

    If F = 0, material is in plastic equilibrium (stress state fulfills the yield criterion or stress

    state at the yield surface)

    F > 0 Not Admissible (stress state cannot be outside the yield surface)

    2nd and 3rd assumptions in Plasticity Rule:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    51/82

    2. The hardening law (h being a hardening parameter), that governs the

     possible changes in shape, size and position of the yield surface withan increase in plastic strains

    3. The plastic flow rule governing the increment of the plastic strains

    Plastic Flow Rule states that during the plastic strain increment along theyield surface, the plastic strain increment is proportional to the

    gradient of the Plastic Potential

    Plastic Potential plhQQ     ,

    Plastic Multiplier Increment    d 

       

      Q

    d d   pl

    This means that the vector representing the plastic strain increment is directed as the

    outward normal vector at the point that corresponds to the current stress state.

    In the superimposed space of stresses and strains:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    52/82

    • The flow rule is called Associated Flow Rule if the yield surface is coincided

    with the plastic potential

    • The flow rule is called Non-Associated Flow Rule if the yield surface is not

    coincided with the plastic potential

    Associated Flow Rule Non-Associated Flow Rule

    Forming of Elasto-Plastic Constitutive Matrix for Finite Element Analysis

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    53/82

    During plastic strain increment, if the stress points remain on the yield surface, then the

    following consistency condition is assumed:

      

     

     

      

     

     

      

     

      pl pl

    T T 

    d h

    h

    F d 

    F dF     

      

     

    By substituting the equations relating stress increment to total strain increment and the flow rule,

    the following equation is obtained:

      

     

     

      

     

     

      

     

      pl pl

    T T 

    d h

    h

    F d 

    F dF     

      

     

     plel d d  D Dd d          

       

      Q

    d d   pl

    0

     

      

     

     

      

     

     

      

     

     

      

     

     

      

     

     

      

     

         

      

    d Qh

    h

    F Q D

    F  Dd 

    F  pl

    T T T 

    Re-arranging this equation so that the plastic multiplier is a function of the total

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    54/82

    strain as follows:

     pe

     H  H 

     Dd F 

      

      

     

        

     

      

     

     

      

     

      

    Q D

    F  H 

    ewhere

     

      

     

     

      

     

     

      

     

      

    Qh

    h

    F  H 

     pl

     p

    = so called Hardening Modulus

    Finally, substitute the equation describing the plastic multiplier into stress versus strain equation,

    the elasto-plastic constitutive matrix governing the incremental direct stress versus strain

    relationship in the non-linear range is given below:

         d  Dd    ep

    T FQ

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    55/82

     pe

    ep

     H  H 

     DF Q

     D D

     D

     

     

     

     

     

     

     

     

        

    The matrix is symmetrical if F=Q (Associated Flow Rule)

    For Strain Hardening Material, H p>0

    For Perfectly Plastic Material, H p=0

    For Strain Softening Material, H p < 0

    Finite Element Method 

    I th FEM l i d fi i ti i di ti d i t i l

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    56/82

    • In the FEM, a complex region defining a continuum is discretized into simplegeometric shapes called elements.

    • The properties and the governing relationships are assumed over these elementsand expressed mathematically in terms of unknown values at specific points in theelements called nodes.

    • An assembly process is used to link the individual elements to the given system.When the effects of loads and boundary conditions are considered, a set of linear ornonlinear algebraic equations is usually obtained.

    • Solution of these equations gives the approximate behavior of the continuum orsystem.

    • The continuum has an infinite number of degrees-of-freedom (DOF), while the

    discretized model has a finite number of DOF. This is the origin of the name, finite

    element method.

    Examples of Perfectly Plastic Material

    k i ld C i i

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    57/82

    Drucker-Prager Yield Criterion

    012     k  I  J F      

    relates to frictional component of shearing resistance

    relates to cohesion component of shearing resistance

    Mohr-Coulomb Yield Criterion

    0cos3

    sinsincos

    3

    sin21  

     

      

         

       

     c J  I F 

     =Lode Angle

           6

    2

    333sin

    2

    3

    2

    3   with

     J 

     J 

    Von Mises Yield Criterion

    Tresca Yield Criterion

     

    For the particular case of a triaxial compression test, 2=3, the

    i b

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    58/82

    equation becomes:

             cos2sin3131   c

    Discontinuities in the yieldsurface gradient in Mohr-

    Coulomb Material : Numerical

    difficulties

    Matsuoka and Nakai Yield Criterion eliminates

    this drawback 

    0

    3

    21

     

     

     

     

     

    K F 

     I  I  I 

    Stress-Strain Constitutive Relationship

    For Elastic and Isotropic Material expressed Strain in terms

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    59/82

    For Elastic and Isotropic Material expressed Strain in terms

    of Stress (plane stress case)

    0

    0

    0

    100

    01

    01

     xy

     y

     x

     xy

     y

     x

     xy

     y

     x

    G

     E  E 

     E  E 

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    12

    '

    '

    0

     E 

     ModulusShear GratiosPoisson

     ModulussYoung E 

    straininitial

    0

    1          E 

    Stress-Strain Constitutive Relationship

    For Elastic and Isotropic Material expressed Stress in terms of Strains

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    60/82

    For Elastic and Isotropic Material expressed Stress in terms of Strains

    (plane stress case)

     

     

     

     

    0

    0

    0

    2

    2100

    01

    01

    1 xy

     y

     x

     xy

     y

     x

     xy

     y

     x E 

     

     

     

     

     

     

     

     

     

      

     

     

    0       E    stressinitial0 For Elastic and Isotropic Material expressed Stress in terms of Strains

    (plane strain case)

     

     

     

     

     

    0

    0

    0

    2

    2100

    01

    01

    211 xy

     y

     x

     xy

     y

     x

     xy

     y

     x E 

      

     

      

     

       

      

        

     

    Strain and Displacement Relationships (for small strains and small rotations)

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    61/82

     x

    v

     y

    u

     y

    v

     x

    u xy y x

          ,,

    v

    u

     x y

     y

     x

     xy

     y

     x

    0

    0

     

      

     Du or 

    In Matrix Form

    Equilibrium Equations (in elastic theory, stresses must satisfy the following

    equilibrium equations)

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    62/82

    0

     x

     xy x  f  y x

      

    0

     y

     y xy  f  y x  

     forcesbodyare f and  f   x x

    Boundary Conditions

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    63/82

    The boundary S of the body can be divided

    into two parts:

    Su (displacement condition) and

    St (traction condition) and is described as:

      uS onvalueknownvvalueknownu vu _  _ 

    ,  

      t  y x   S onvalueknown yt valueknown xt    t t  _  _ 

    ,  

    All types of loads (distributed surface loads, body forces, concentrated

    forces and moments) are converted to point forces acting at the nodes

    General Formulation of the Finite Element Stiffness Matrix

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    64/82

    Displacement (u, v) inside a plane element are interpolated from nodal

    displacement (ui, vi) using shape functions Ni as follows:

    .

    .

    ....00

    ...00

    2

    2

    1

    1

    21

    21 N uor v

    u

    v

    u

     N  N 

     N  N 

    v

    u

    vector nt displacemenodal

    vector nt displacemeu

    matrix functionshape N 

    From the strain-displacement relationship, the strain vector is:

    BDND dd

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    65/82

    matrixnt displacemestraintheis

     DN  Bwhere

     Bor  DN  Du

    d ,d      

    The strain energy stored in an element is:

      vol

     xy xy y y x x

    vol

    T  dV dV U            2

    1

    2

    1

      volT 

    vol

    T  dV  E dV  E U        21

    21

    kd d 2

    1

    d d 2

    1   T 

    vol

    T T 

     EBdV  BU   

    The Element Stiffness Matrix k is:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    66/82

    volT 

     EBdV  Bk 

    Given the material property E, the behavior of k depends on the B

    matrix only, which in turn depends on the shape functions N.

    Thus the quality of the finite element analysis is also determined by

    the choice of the shape functions.

    Constant Strain Triangle (CST)

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    67/82

    Using the strain-displacement relationship, the strain within the element is

    related to the displacement at the nodes:

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    68/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    69/82

    69

    Other types of elements

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    70/82

    Assemble Global Stiffness Matrix

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    71/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    72/82

    matrixnt displacemestraintheis

     DN  Bwhere

     Bor  DN  Du

    d ,d      vol

    T  EBdV  Bk 

    .

    .

    ....00

    ...00

    2

    2

    1

    1

    21

    21 N uor v

    u

    v

    u

     N  N 

     N  N 

    v

    u

     Du 

    Stress Calculation

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    73/82

     

     

     

     

     

    0

    0

    0

    2

    2100

    0101

    211 xy

     y

     x

     xy

     y

     x

     xy

     y

     x E 

     

      

     

      

       

      

       

      

    d  EB E 

     xy

     y

     x

     xy

     y

     x

     

     

     

     

     

     

    For linear elastic material, solution is direct and converge at each load step

    For non-linear elastic material and material behaves as elasto-plastic, iterative

    method is required because the stiffness matrix is non-symmetrical

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    74/82

    vol

    epT   BdV  E  Bk 

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    75/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    76/82

    Mohr-Coulomb Yield Criterion (Elasto-Plastic Model)

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    77/82

    For non-associated flow rule,

    replace internal friction angle  bydilution angle

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    78/82

    Sandip Shah,

    Ph.D. Thesis,

    Department of

    Civil

    Engineering,

    University ofToronto

    For Hoek- Brown Yield Criterion (Elasto-Plastic Model)

    Carranza-Torresa C and Fairhurst C 1999 The elasto-plastic response

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    79/82

    Carranza-Torresa, C. and Fairhurst, C. 1999. The elasto-plastic response

    of underground excavations in rock masses that satisfy the Hoek-Brown

    failure criterion. International Journal of Rock Mechanics and Mining

    Sciences, vol. 36, pp. 777-809.

    Mohr Circles

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    80/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    81/82

  • 8/17/2019 Lecture1(Stress Strain MohrCircle FEM)

    82/82