Lecture Slides Chapter 5

28
Practical Stress Analysis with Finite Elements (2 nd Edition) Dr. Bryan J Mac Donald © Bryan Mac Donald/Glasnevin Publishing 20072011

Transcript of Lecture Slides Chapter 5

Page 1: Lecture Slides Chapter 5

Practical Stress Analysis with Finite Elements (2nd Edition)

Dr. Bryan J Mac Donald

© Bryan Mac Donald/Glasnevin Publishing 2007‐2011

Page 2: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 163 to 164 of book

Overview of Material Models

Chapter 3 showed how the implementation of the minimum potential energymethod requires three matrices [S], [B] and [D] which define the behaviour ofthe finite elements.

In Chapter 4 we developed the [S] matrix for each element type andillustrated how to obtain the [B] matrix from differentiation of the [S] matrix.

This chapter completes the specification of element behaviour by establishingthe material property matrix [D]

Each material model will be discussed in increasing order of complexity inreference to table 3.01 in chapter 3

Page 3: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 163 to 164 of book

Linear Elastic Isotropic Model

We have already describe this in detail in chapter 2:

• Assumes material behaviour is isotropic – sameproperties in all directions.

• Assumes Hooke’s law is valid: = E• Assumption is only valid until yield stress is

reached – must not be used after this point.

• Useful as a “first guess” even if yield is expected• Requires E and in it’s definition

Page 4: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 164 to 165 of book

Linear Elastic Orthotropic Model

Page 5: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 165 to 166 of book

Linear Elastic Anisotropic Model

• Linear elastic behaviour• Different elastic constants in every

direction.• i.e. no planes of symmetry• 21 Elastic constants required• Multiple material tests required to

fill [D] matrix with constants.

Page 6: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 166 to 167 of book

Non‐Linear Elastic Materials

• Elastomers (rubber like materials)• Foams• Certain polymers• Biomaterials (arterial tissue, collagen, etc.)

• Let’s take rubber as an example:• Up to 500% strain is possible with elastic recovery• The stress‐strain plot is highly non‐linear (i.e. curved)• It has damping properties• Behaviour is time dependant and temperature dependant• Almost incompressible

• See book page 166 for definition of stretch ratio, and the strain invariants:I1 , I2 and I3

Page 7: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 166 to 167 of book

Neo‐Hookian Model

Page 8: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 168 to 169 of book

Mooney‐Rivlin Models

Page 9: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 169 to 170 of book

The Yeoh Model

• Depends only on I1 – less tests required• Inaccurate for small strains• General form and 2 parameter form shown

The Arruda‐Boyce Model

• Also depends only on I1 – less tests required• More accurate for small strains• General form shown

Page 10: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 169 to 170 of book

The Gent Model

• Alternative attempt at accurately modelling all strain levels

The Ogden Model

• Allows for up to 700% strain!• The  parameter can be varied to allow for strain stiffening 

or softening• Has been successfully used to model seals, O‐rings, etc.

Page 11: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 170 to 171 of book

The Ogden Compressible Foam Model

The Blatz‐Ko Model

• Both of these are used for rubber foams• See book page 170‐171 for more.

Page 12: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 171 to 172 of book

Hyper‐elastic Material Modelling

Page 13: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 171 to 172 of book

Visco‐elastic Material Models

• Exhibts both elastic and viscous deformation.• Instantaneous elastic deformation but viscous deformation occurs over time (i.e. creep)• Hysteresis, creep and stress relaxation are all dependant on temperature.• Example materials: Rubber, blood vessels, cartilage, saliva, mucus, Glass, etc.

• Stress relaxation: apply a set strain to a visco‐elastic material and stress will decrease over time!

Page 14: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 172 to 173 of book

The Maxwell Visco‐elastic Material Model

• Uses a spring (elastic) and a dashpot (viscous) in series.

• Sudden application of force• Instantaneous deformation of the spring• Followed by creep of dashpot (sloped line)

• Sudden application of displacement• Force in spring instantly rises• Dashpot then slowly expands and relieves 

the stress (curved line)

Page 15: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 174 to 175 of book

The Kelvin‐Voight Visco‐elastic Material Model

• Uses a spring (elastic) and a dashpot (viscous) in parallel.

• Sudden application of force• Material deforms at a decreasing strain rate

– the slope constantly reduces• Eventually reaches a steady state• If force is removed then relaxes

exponentially to the un‐deformed state• <better than Maxwell!!>

• Sudden application of displacement• Force in spring instantly rises• Followed by instantaneous stress relaxation

due to the dashpot being in parallel.• <Not accurate!! Maxwell is better here.>

Page 16: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 174 to 175 of book

The Standard Linear Solid Visco‐elastic Material Model

• Combines Maxwell with a parallel spring. 

• Sudden application of force• Instantaneous elastic deformation due to

spring followed by deformation at adecreasing strain rate.

• If force is removed then there is aninstantaneous reaction followed by anexponential decay to the un‐deformed state

• Sudden application of displacement• Force in spring instantly rises• Followed by a gradual stress relaxation due

to the dashpot

Page 17: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 176 to 177 of book

Elasto‐Plastic Material Models

• Illustration of strain‐rate effects:

• Modelling the deformation of a bar due to axial compressive load.• In this case the load is applied very quickly in order to model impact of the bar against a 

rigid surface.• (a) shows the ¼ symmetry model• (b) shows a model using a strain‐rate dependant material model• (c) shows a model using a strain‐rate independent material model 

Page 18: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 176 to 177 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• The Bilinear Elasto‐Plastic Mateial Model:

• Two lines: One for the elastic deformation, another for the plastic• E (Young’s Modulus) defines the slope of the elastic line• Etan (Tangent Modulus) defines the slope of the plastic line• Only valid up to the UTS – cannot model stress softening and necking effects. 

Page 19: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 178 to 179 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Hardening Laws:   (Stress range = difference in stress between unloading and next yield event)

Bilinear Kineamtic• (1) Tensile load is applied• (2) Yielding occurs• (3) Plastic deformation• (4) Compressive load applied• (5) Yielding (in compression)• Stress range = 2 Yield Stress

Bilinear Isotropic(1) Tensile Load is applied(2) Yielding occurs(3) Plastic deformation(4) Compressive load applied(5) Yielding (in compression)(6) Stress range = 2 max stress in tension.

Page 20: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 178 to 179 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Hardening Laws:   

Page 21: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 179 to 180 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Multi‐linear Elasto‐Plastic Material Model:  

• Obvious extension of the bi‐linear model• Why only have two lines, when you can more closely model the actual stress‐strain curve 

with more lines….

Page 22: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 180 to 181 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Power Law Elasto‐Plastic Material Model

• Caboche form : combines istotropic and kinematic hardening to give a yield surface that both changes size and moves in stress space.

Basic form:

Isotropic form: Voce hardening law

Kinematic form:  uses a back stress for Bauschinger effect 

Page 23: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 180 to 181 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Power Law Elasto‐Plastic Material Model

Page 24: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 181 to 182 of book

Strain‐rate Independent Elasto‐Plastic Material Models

• Anisotropic Hill Elasto‐Plastic Material Model

Page 25: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 182 to 183 of book

Strain‐rate Dependent Elasto‐Plastic Material Models

• Perzyna visco‐plastic model:

• Pierce visco‐plastic model:

• Cowper‐Symonds model:

• Power law and Cowper‐Symonds:

• Ramsburg‐Osgood model:

Page 26: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 184 to 185 of book

Specialised Plasticity Material Models

• Concrete:

• Soil and Granular materials: Drucker‐Prager Model

• Cast Iron:

Page 27: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 186 to 189 of book

Specialised Material Models

• Damage Models:  Composite Damage model – various modes of damage possibleConcrete Damage model – cracking and crushing

• Shape Memory Alloys:

• Creep: • Foam models : closed cell, viscous, low density, crushable etc.

• Gasket models: high compression and highly non linear

Page 28: Lecture Slides Chapter 5

© Bryan Mac Donald/Glasnevin Publishing 2007-2011

Chapter 5: Material Models Pages 188 to 189 of book

Summary of Chapter 5:

After completing chapter 5, you should:

1. Understand the various material models that are available for use in astructural finite element analysis.

2. Be able to correctly identify the most appropriate model for use in youranalysis.