Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of...

19
10/2/2019 1 Computational Science: Computational Methods in Engineering Review of Basic Linear Algebra Outline Solving systems of linear equations Matrix terminology and special matrices Matrix operations Common linear algebra problems 2 1 2

Transcript of Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of...

Page 1: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

1

Computational Science:

Computational Methods in Engineering

Review of Basic Linear Algebra

Outline

• Solving systems of linear equations

•Matrix terminology and special matrices

•Matrix operations

•Common linear algebra problems

2

1

2

Page 2: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

2

3

Solving Systems of Linear Equations

Systems of Linear Equations

4

Very often in science and engineering, problems can be reduced to a system of linear equations.

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

constant coefficient (usually known)

unknown values

constants (usually excitation)

ij

i

i

a

x

b

3

4

Page 3: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

3

Direct Analytical Solution

5

Step 1 – Solve first equation for x1.

Suppose it is desired to solve the following system of equations

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

131 1211 1 12 2 13 3 1 1 2 3

11 11 11

21 1 22 2 23 3 2

31 1 32 2 33 3 3

ab a

a x a x a x b x x xa a a

a x a x a x b

a x a x a x b

Direct Analytical Solution

6

Step 2 – Forward Substitution – Substitute this new equation into 2nd and 3rd equations to eliminate x1.

11 1 12 2 13 3 1

22 2 23 3 2

32 2 33 3 3

a x a x a x b

a x a x b

a x a x b

21 1321 12 21 122 22 23 23 2 2

11 11 11

31 12 31 13 31 132 32 33 33 3 3

11 11 11

a aa a a ba a a a b b

a a a

a a a a a ba a a a b b

a a a

5

6

Page 4: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

4

Direct Analytical Solution

7

Step 3 – Solve second equation for x2.

11 1 12 2 13 3 1

23222 2 23 3 2 2 3

22 22

32 2 33 3 3

a x a x a x b

aba x a x b x x

a a

a x a x b

Direct Analytical Solution

8

Step 4 – Forward Substitution – Substitute this new equation into 3rd equation to eliminate x2.

11 1 12 2 13 3 1

22 2 23 3 2

33 3 3

a x a x a x b

a x a x b

a x b

32 23 32 233 33 3 3

22 22

a a a b

a a b ba a

7

8

Page 5: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

5

Direct Analytical Solution

9

Step 5 – Solve third equation for x3.  Since this is the last equation, the final answer for is obtained for x3.

33

33

bx

a

Direct Analytical Solution

10

Step 6 – Backward Substitution – Given x3, calculate x2 using equation from Step 3.

2 23 32

22

b a xx

a

9

10

Page 6: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

6

Direct Analytical Solution

11

Step 7 – Backward Substitution – Given x2 and x3, calculate x1 using equation from Step 1.

1 12 2 13 31

11

b a x a xx

a

12

Matrix Terminology& Special Matrices

11

12

Page 7: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

7

Systems of Linear Equations

13

Systems of equations can be written in matrix form.

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b

a a a x b

or

A

A

or

x

x

or

b

b

Rows, Columns, and Diagonals

14

The center diagonal is usually just called the diagonal.

The elements along the diagonal are sometimes called the pivot elements.

13

14

Page 8: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

8

Special Matrices (1 of 2)

15

Symmetric Matrix

1 2 9 4

2 6 5 8

9 5 7 0

4 8 0 3

A

Diagonal Matrix

1 0 0 0

0 6 0 0

0 0 7 0

0 0 0 3

A

Identity Matrix

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

I

Zero Matrix

0 0 0 0

0 0 0 00

0 0 0 0

0 0 0 0

Bandwidth of 3

Special Matrices (2 of 2)

16

Upper Triangular Matrix

1 2 9 4

0 6 5 8

0 0 7 5

0 0 0 3

A

Lower Triangular Matrix

1 0 0 0

2 6 0 0

9 5 7 0

4 8 1 3

A

Banded Matrix

1 2 0 0

4 6 5 0

0 8 7 5

0 0 10 3

A

Vandermonde Matrix2

1 1 12

2 2 22

3 3 3

21 1 1

1

1

1

1

N

N

N

NN N N

x x x

x x x

x x x

x x x

Arises when curve fitting to polynomials.Usually ill‐conditioned for large matrices.

Triangular matrices can be thought of as “almost” solved matrices.  They are very fast to solve.

15

16

Page 9: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

9

Block Matrices

17

Block matrices are “matrices of matrices.”

11 12 11 12 11 12 11 12

21 22 21 22 21 22 21 22

a a b b c c d d

A B C Da a b b c c d d

11 12 11 12

21 22 21 22

11 12 11 12

21 22 21 22

a a b b

a a b bA BF

C D c c d d

c c d d

Sparse Matrices

18

Many matrices contain 99.9% zeros.

It is not efficient use of memory to store all these zeros.  Instead, we store only the non‐zero elements along with their positions in the matrix.

The opposite of a sparse matrix is a full matrix.

17

18

Page 10: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

10

Matrix Problem Size

19

# Equations > # Unknowns # Equations = # Unknowns # Equations < # Unknowns

Usually occurs when the equations are derived from samples.

Solution is obtained as a best fit and is not exact.

Applications• Curve fitting

Most usual case.

Many standard algorithms exist to obtain an exact solution.

Applications• Circuit theory• Solving ODEs

Usually occurs when little is known about the problem or solution.

Solution is obtained by optimization and is not exact.

Applications• Topology optimization

Health of a Matrix (1 of 3)

20

Is this system of equations solvable?

2 8 1 2 1 8

2 8 1 2 1 8

3 4 3 1 1 4

x y z x

x y z y

x y z z

No!The 1st and 2nd equations are the same.  The 2nd

equation does not provide any new information to the problem.

2 8 1 2 1 8

2 4 2 16 2 4 2 16

3 4 3 1 1 4

x y z x

x y z y

x y z z

2 8 1 2 1 8

4 2 12 4 1 2 12

3 4 3 1 1 4

x y z x

x y z y

x y z z

No!The 2nd equation is just 2× the 1st equation.  The 2nd

equation is still not providing any new information.

No!The 2nd equation is the sum of the 1st and 3rd equation, thus the 2nd equation still does not provide any new information.

19

20

Page 11: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

11

Health of a Matrix (2 of 3)

21

Is this system of equations solvable?

8 1 0 1 8

2 7 1 0 2 7

3 4 3 0 1 4

x z x

x z y

x z z

No!None of these equations contain any information about y.

So how do we know if a problem is solvable?

• All rows must be linearly independent – this ensures they provide new information to the problem.• No rows can be all zeros – This would not provide any information.• No columns can be all zeros – This would be ignoring information from one of the unknowns.

is solvable if det 0A x b A

Health of a Matrix (3 of 3)

22

Is the following system of equations solvable?

Condition Number of a Matrix

max

min

AA

A

2 8 1 2 1 8

1.0001 2 8.0001 1.0001 2 1 8.0001

3 4 3 1 1 4

x y z x

x y z y

x y z z

Technically yes, but we would expect the solution to be somewhat “touchy” and unstable.  This is an ill-conditionedmatrix.

The condition number (A) of matrix A is a measure of how much an answer will change given small changes in the matrix b.

Matrices with high condition numbers are less stable.  Small changes in the element values of A will result in large changes in the elements of b.

min

max

smallest singular value of

largest singular value of

A A

A A

21

22

Page 12: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

12

Example: Condition Number

23

What is the condition number?

1 2 1

1 2 1

3 1 1

A 165.84 10 A

1 2 1

1 0 1

3 1 1

A 7.76 A

1 2 1

1.0001 2 1

3 1 1

A 51.4 10 A

1 2 1

1.01 2 1

3 1 1

A 31.4 10 A

24

Matrix Operations

23

24

Page 13: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

13

Matrix Math (1 of 4)

25

Addition:

11 12 13 11 12 13 11 11 12 12 13 13

21 22 23 21 22 23 21 21 22 22 23 23

31 32 33 31 32 33 31 31 32 32 33 33

a a a b b b a b a b a b

A B a a a b b b a b a b a b

a a a b b b a b a b a b

11 12 13 11 12 13 11 11 12 12 13 13

21 22 23 21 22 23 21 21 22 22 23 23

31 32 33 31 32 33 31 31 32 32 33 33

a a a b b b a b a b a b

A B a a a b b b a b a b a b

a a a b b b a b a b a b

Subtraction:

Matrix Math (2 of 4)

26

Multiplication by a Scalar:

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

a a a sa sa sa

s A s a a a sa sa sa

a a a sa sa sa

11 12 13 11 12 13 11 11 12 21 13 31

21 22 23 21 22 23

31 32 33 31 32 33

11 12 13 1 11 1 12 2 13 3

21 22 23 2 21 1 22

31 32 33 3

# #

# # #

# # #

a a a b b b a b a b a b

A B a a a b b b

a a a b b b

a a a x a x a x a x

A x a a a x a x a x

a a a x

2 23 3

31 1 32 2 33 3

a x

a x a x a x

Multiplication by a Matrix

25

26

Page 14: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

14

Matrix Math (3 of 4)

27

Matrix Transpose:

11 12 13 11

21 22 23 22

31 32 3

21 31

12 32

13 2 333 3

T

T

a a a a

A a a a a

a a a a

a a

a a

a a

* *21 31

* *1

**

11 12 13 11* *

21 22 23 222 32* *1

*31 32 33 333 23

T

H

ij ji

a a

a a

a a

a a a a

A a a a a a a

a a a a

Hermitian Transpose:

ij jia a

Animation of Transpose Operation

Matrix Math (4 of 4)

28

Determinants:

det A Think of this as the “magnitude” or “volume” of a matrix.

Matrix Inverse:

1A A I

Matrix Division:

1

1

predivide

postdivide

A B

B A

Matrix Multiplication:

premultiplies

postmultiplies

A B A B

B A A B

A\B

B/AWhile both expressions divide by [A], these do not give the same answer.

27

28

Page 15: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

15

Matrix Algebra (1 of 3)

29

Commutative Laws

A B B A

A B B A

Associative Laws

A B C A B C

A B C A B C

Distributive Laws

A B C A C B C

A B C A B A C

Matrix Inverses and Transposes

1 1

11

1 1 1

1 1

TT

T T T

A A A A I

A A

A B B A

A A

A B A B

TT

T T T

A A

A B B A

[A][B] = [B][A] only when [A]and [B] are diagonal matrices.

Matrix Algebra (2 of 3)

30

Addition with a Scalar

11 12 1

21 22 2

1 2

doesn't make sense

n

n

n n nn

A

a a a

a a aI A

a a a

Multiplication with a Scalar

A B A B

A B A B A B

29

30

Page 16: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

16

Matrix Algebra (3 of 3)

31

Operations with Special Matrices

0 0 0

0 0

0

A A

I A A I A

A A A

A A

Example of Matrix Algebra

32

Simplify the Following Equation

11 C A D BC D

Step 1 – Subtract D from both sides

11

11

11

C A D D BC D D

C A 0 BC 0

C A BC

Step 2 – Inverse both sides

1 111

1 1 1

C A

C A C B

BC

Step 3 – Premultiply both sides by C.1 1 1

1

1

CC A CC B

IA IB

A B

31

32

Page 17: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

17

33

Common Linear Algebra Problems

[A][x] = [b]

34

This problem arises when a problem [A] is given some excitation [b] and produces a solution [x].

Examples: (1) waves scattering from an object, (2) heat through a device, (3) solving currents and voltages in a circuit.

It produces a single solution.

Step 1 – Differential equation2

2

d f dff b

dx dx

Step 2 – ODE is converted to system of equations using finite‐differences, finite elements, etc.

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

n n

n n

n n nn n n

a f a f a f b

a f a f a f b

a f a f a f b

Step 3 – System of equations is put into matrix form.

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a f b

a a a f b

a a a f b

Step 4 – Matrix problem is solved for [f]

1f A b

Step 5 – [f] is post processed to learn something.

33

34

Page 18: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

18

Eigen‐Value Problems  𝐴 𝑥 𝜆 𝑥

35

Eigen‐value problems arise when multiple solutions exist.  No excitation is needed.

Examples: (1) resonating modes on a string, (2) electromagnetic modes in a waveguide, (3) electronic bands in a semiconductor.

Standard eigen-value problem

Generalized eigen-value problem

A x x

A x B x

is the linear operation

is the unknown (eigen-vector)

is the eigen-value and is just a scalar number

is potentially another part of the linear operation

A

x

B

Determinants

36

The determinant is an important number associated with square matrices.

It is sort of a magnitude or volume.

Unique solutions to systems of equations do not exist when the determinant is zero.

11 1211 22 12 21

21 22

deta a

A a a a aa a

3×3 Matrices

2×2 Matrices

11 12 13

22 23 21 23 21 2221 22 23 11 12 13

32 33 31 33 31 3231 32 33

det

a a aa a a a a a

A a a a a a aa a a a a a

a a a

This can be calculated by walking across any of the rows.

35

36

Page 19: Lecture -- Review of Linear Algebra · Review of Basic Linear Algebra Outline •Solving systems of linear equations •Matrix terminology and special matrices •Matrix operations

10/2/2019

19

Cramer’s Rule

37

Cramer’s rule provides a methodical approach for calculating the unknowns of a system of equations.

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b

a a a x b

a a a x b

1 12 13

1 2 22 23

3 32 33

1b a a

x b a aD

b a a

11 1 13

2 21 2 23

31 3 33

1a b a

x a b aD

a b a

11 12 1

3 21 22 2

31 32 3

1a a b

x a a bD

a a b

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

det

a a a a a a

D a a a a a a

a a a a a a

37