Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy...

36
Classical Mechanics Lecture 7 Today’s Concepts: Work & Kine6c Energy Mechanics Lecture 7, Slide 1 UNIT 10: WORK AND ENERGY Approximate Classroom Time: Three 100 minute sessions "Knowing is not enough; we must apply. Willing is not enough; we must do." Bruce Lee ES

Transcript of Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy...

Page 1: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Classical Mechanics Lecture 7

Today’s  Concepts:Work  &  Kine6c  Energy

Mechanics    Lecture  7,  Slide  1

Name ____________________________ Date (YY/MM/DD) ______/_________/_______

SFU [email protected] Section__________ Group_____

UNIT 10: WORK AND ENERGYApproximate Classroom Time: Three 100 minute sessions

"Knowing is not enough; we must apply. Willing is not

enough; we must do."Bruce Lee

OBJECTIVES

1. To extend the intuitive notion of work as physical effort

to a formal mathematical definition of work as a function

of force and distance.

2. To develop an understanding of the physical significance

of mathematical integration.

3. To understand the concept of power and its relationship

to work.

4. To understand the concept of kinetic energy and its rela-

tionship to work as embodied in the work-energy theorem.

5. To relate experimentally determined kinetic energy loss

to frictional loss.

6. To apply concepts involving the conservation of momen-

tum, work, and energy to the analysis of breaking boards

in Karate.

© 1990-94 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S.

Dept. of Ed.) and NSF. Modified for SFU by N. Alberding, 2005.

Page 2: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Karate

Will  not  do  Session  3  of  Unit  10.

It  is  a  Karate  thing.

You  can  do  it  as  a  “project”  in  Unit  14  instead  of  the  assigned  project  on  the  pendulum.

Page 3: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Stuff you asked about:

WHAT  IS  GOING  ON  WITH  ALL  THE  INTEGRALS??????  HELP  :(Why  is  it  necessary  to  use  integrals  in  the  equa6on  for  work?  everything.  everything  is  difficultEverything  is  fine  except  the  work  done  by  Gravity  far  from  earth  The  slides  had  a  lot  of  informa6on  that  was  confusing  and  it  flew  by.  I  

didn't  have  6me  to  understand  what  was  going  on.  The  dot  product  is  ocnfusingPre`y  much  everything.  This  prelecture  sort  of  went  over  my  head.  I'll  

definitely  have  to  watch  it  again.  The  concept  of  posi6ve  and  nega6ve  work  is  very  confusing.  please  

explainUh  oh.  Hotdog.

Mechanics    Lecture  7,  Slide  2

I hope you have enough funny quotes to fit into your slides.

Page 4: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Stuff you asked about:

Does  work  also  define  a  change  in  poten6al  energy?  For  the  last  checkpoint  ques6on,  the  poten6al  energy  is  changing  as  the  car  moves  up  the  slope.  Would  this  effect  the  quan6ty  of  work?

Can  we  go  over  and  work  out  some  actual  problems  using  dot  product  and  the  equa6ons  used  in  the  prelecture  next  class?  Not  just  concept  ques6ons  but  ones  that  would  be  similar  to  our  homework  ques6ons  as  well.

Can  we  go  over  Ques6on  1  in  the  prelecture?  I  think  I'm  missing  something  in  the  ques6on  or  something,  but  it  doesn't  se`le  well  with  me.

Mechanics    Lecture  7,  Slide  2

Page 5: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

The Dot Product

Mechanics    Lecture  7,  Slide  3

Page 6: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

~A =A

x

ı + A

y

| + A

z

k

~B =B

x

ı + B

y

| + B

z

k

ı · ı =1| · | =1

k · k =1

ı · | =0

| · k =0

k · | =0

Dot Product using Unit Vectors

TextTextetc.

Page 7: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

~A · ~B =(A

x

ı + A

y

| + A

z

k) · (Bx

ı + B

y

| + B

z

k)

=(Ax

B

x

ı · ı + A

x

B

y

ı · | + · · · + A

z

B

y

k · j + A

z

B

z

k · k)=(A

x

B

x

⇥ 1 + A

x

B

y

⇥ 0 + · · · + A

z

B

y

⇥ 0 + A

z

B

z

⇥ 1)~A · ~B =(A

x

B

x

+ A

y

B

y

+ A

z

B

z

)

Dot Product in Rectangular Coordinates

Page 8: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

~A · ~B =(A

x

B

x

+ A

y

B

y

+ A

z

B

z

)

=|~A||~B| cos ✓

✓ = arccos

0BBBB@~A · ~B|~A||~B|

1CCCCA

Finding the angle between vectorsIf  we  know  the  xyz  components  of  two  vectors  we  can  find  the  angle  between  them:

therefore

Page 9: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

|⇥A| =|⇥B| = 5

⇥A · ⇥B =3 · 4 + 4 · 3 = 24

� = arccos

0BBBB@⇥A · ⇥B|⇥A||⇥B|

1CCCCA

� = arccos

24

25

!= arccos 0.96

=0.28 rad = 16

~A = 3ı + 4 |~B = 4ı + 3 |

Example

Page 10: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Work-Kinetic Energy TheoremThe  work  done  by  the  net  force  F  as  it  acts  on  an  object  that  moves  between  posi6ons  r1  and r2 is  equal  to  the  change  in  the  object’s  kine6c  energy:

Mechanics    Lecture  7,  Slide  4

W =

~r2Z

~r1

~F · d~l

Page 11: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

W =

~r2Z

~r1

~F · d~l = ~F · ~d0BBBBBBBBB@

~r2Z

~r1

d~l = ~d

1CCCCCCCCCA

Work-Kinetic Energy Theorem: 1-D Example

If  the  force  is  constant  and  the  direc6ons  aren’t  changing  then  this  is  very  simple  to  evaluate:

Mechanics    Lecture  7,  Slide  5

In  this  case     since  cos(0)=1

This  is  probably  what  you  remember  from  High  School.(The  nota6on  may  be  confusing  though.)

F d

= Fd

car

Page 12: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Clicker Question

A  lighter  car  and  a  heavier  van,  each  ini6ally  at  rest,  are  pushed  with  the  same  constant  force  F.  Aier  both  vehicles  travel  a  distance  d,  which  of  the  following  statements  is  true?  (Ignore  fric6on)

Mechanics    Lecture  7,  Slide  6

A)  They  will  have  the  same  velocityB)  They  will  have  the  same  kine6c  energyC)  They  will  have  the  same  momentum

F d

F d

car

van

Page 13: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

~r2Z

~r1

~F · d~l = �K

A  force  pushing  over  some  distancewill  change  the  kine6c  energy.

Mechanics    Lecture  7,  Slide  7

Concept  –  very  important

Deriva6on  –  not  so  important

θ

Page 14: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Work done by gravity near the Earth’s surface

Mechanics    Lecture  7,  Slide  8

mgpat

h

Page 15: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

= m~g · d~l1 + m~g · d~l1 + · · · + m~g · d~lN

mg

dl1dy1

dx1

mg

dl1

dl2

dlN

Work done by gravity near the Earth’s surface

Mechanics    Lecture  7,  Slide  9

2

Page 16: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

mg

dl1

dl2

dlN

Work done by gravity near the Earth’s surface

Mechanics    Lecture  7,  Slide  10

Δy

= m~g · d~l1 + m~g · d~l1 + · · · + m~g · d~lN

Page 17: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Work-Kinetic Energy Theorem

If  there  are  several  forces  ac6ng  then  W  is  the  work  done  by  the  net  (total)  force:

Mechanics    Lecture  7,  Slide  12

You  can  just  add  up  the  work  done  by  each  force  

Page 18: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

H

Free  Fall                                          Fric6onless  incline                                  String

CheckPoint

Three  objects  having  the  same  mass  begin  at  the  same  height,  and  all  move  down  the  same  ver6cal  distance  H.  One  falls  straight  down,  one  slides  down  a  fric6onless  inclined  plane,  and  one  swings  on  the  end  of  a  string.    

Mechanics    Lecture  7,  Slide  13

In  which  case  does  the  object  have  the  biggest  net  work  done  on  it  by  all  forces  during  its  mo6on?

A)  Free  Fall   B)  Incline   C)  String     D)  All  the  same

Page 19: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

vp

Clicker Question

Three  objects  having  the  same  mass  begin  at  the  same  height,  and  all  move  down  the  same  ver6cal  distance  H.  One  falls  straight  down,  one  slides  down  a  fric6onless  inclined  plane,  and  one  swings  on  the  end  of  a  string.    What  is  the  rela6onship  between  their  speeds  when  they  reach  the  bo`om?

H

Free  Fall                                          Fric6onless  incline                                  Pendulum

A)      vf > vi > vp B)    vf > vp > vi C)    vf = vp = vi

Mechanics    Lecture  7,  Slide  14

v f vi

Page 20: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

CheckPoint / Clicker Question

Only  gravity  will  do  work:  Wg = Δ K

H

Free  Fall                                          Fric6onless  incline                                  String

A) vf > vi > vp B) vf > vp > vi C) vf = vp = vi

Wg = mgH

Δ K = 1/2 mv22

Mechanics    Lecture  7,  Slide  15

Page 21: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

CheckPoint

A  car  drives  up  a  hill  with  constant  speed.  Which  statement  best  describes  the  total  work  WTOT  done  on  the  car  by  all  forces  as  it  moves  up  the  hill?

Less  than  40%  got  this  right…

A)  WTOT = 0

B)  WTOT > 0

C)  WTOT < 0

v

Mechanics    Lecture  7,  Slide  16

Page 22: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

v

CheckPoint

A  car  drives  up  a  hill  with  constant  speed.  Which  statement  best  describes  the  total  work  WTOT  done  on  the  car  by  all  forces  as  it  moves  up  the  hill?

A) WTOT = 0

B) WTOT > 0

C) WTOT < 0

A)  The  change  in  kine6c  energy  is  zero  because  the  velocity  is  constant.  By  the  work-­‐kine6c  energy  theorem,  we  know  that  work  must  also  be  zero.  

B)  The  force  of  fric6on  between  the  car's  wheels  and  the  ramp  exert  a  force  up  the  ramp  over  a  par6cular  distance.  W=Fd,  so  the  work  is  posi6ve.  C)  gravity  is  downward  and  car  moves  up  the  hill.  

Mechanics    Lecture  7,  Slide  18

Page 23: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

v

Clicker Question

A  car  drives  up  a  hill  with  constant  speed.  How  does  the  kine6c  energy  of  the  car  change  as  it  moves  up  the  hill?

A)    It  increasesB)    It  stays  the  sameC)    It  decreases

Mechanics    Lecture  7,  Slide  17

Page 24: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

CheckPoint

A  box  sits  on  the  horizontal  bed  of  a  moving  truck.  Sta6c  fric6on  between  the  box  and  the  truck  keeps  the  box  from  sliding  around  as  the  truck  drives.  

µS

a

The  work  done  on  the  box  by  the  sta6c  fric6onal  force  as  the  truck  moves  a  distance  D  is:

A)  Posi6ve    B)  Nega6ve    C)  Zero

About  60%  got  this  right…

Mechanics    Lecture  7,  Slide  21

Page 25: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Physics  211    Lecture  7,  Slide    22

From Before

A  box  sits  on  the  horizontal  bed  of  a  moving  truck.  Sta6c  fric6on  between  the  box  and  the  truck  keeps  the  box  from  sliding  around  as  the  truck  drives.  

If  the  truck  moves  with  constant  accelera6ng  to  the  lei  as  shown,  which  of  the  following  diagrams  best  describes  the  sta6c  fric6onal  force  ac6ng  on  the  box:

µS

a

A B C

Page 26: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

CheckPoint

Physics  211    Lecture  7,  Slide    23

The  work  done  on  the  box  by  the  sta6c  fric6onal  force  as  the  truck  moves  a  distance  D  is:

A)  Posi6ve    B)  Zero    C)  Nega6ve  D)  Depends

D

A)  because  the  direc6on  of  the  sta6c  fric6onal  force  and  the  direc6on  the  box  travels  are  all  same.  

B)  Since  the  fric6on  force  always  has  opposite  direc6on  from  the  movement  direc6on,  the  work  done  is  nega6ve  

C)  Fric6on  keeps  the  box  from  sliding,  thus  D=0,  and  work  done  is  0.

µS

a

F

Page 27: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Problem

184 | C H A P T E R 6 Work and Kinetic Energy

Example 6-7 Pushing a Box

You push a box up a ramp using a constant horizontal force . For each distance ofalong the ramp, the box gains of height. Find the work done by for eachthe box moves along the ramp (a) by directly computing the scalar product from the

components of and where is the displacement, (b) by multiplying the product of themagnitudes of and by where is the angle between the direction of and the di-rection of (c) by finding (the component of in the direction of ) and multiplying itby (the magnitude of ), and (d) by finding (the component of in the direction of )and multiplying it by the magnitude of the force.

PICTURE Draw a sketch of the box in its initial and final positions. Place coordinate axes onthe sketch with the x axis horizontal. Express the force and displacement vectors in compo-nent form and take the scalar product. Then find the component of the force in the directionof the displacement, and vice versa.

SOLVE

FS

!S

!||!S

!!S

FS

F||!S

,FS

fcosf,!S

FS

!S

!S

,FS

5.00 mFS

3.00 m5.00 mFS

100-N

CHECK The component of in the direction of is This answer verifies our Part (b) result.

PRACTICE PROBLEM 6-6 (a) Find for and (b) Find A, B, and the angle between and for these vectors.

WORK IN SCALAR-PRODUCT NOTATIONIn scalar-product notation, the work dW done by a force on a particle over aninfinitesimal displacement is

6-18

INCREMENTAL WORK

where is the magnitude of and is the component of in the direction of The work done on the particle as it moves from point 1 to point 2 is

6-19

THE DEFINITION OF WORK

(If the force remains constant, the work can be expressed where is thedisplacement. In Chapter 3, the displacement is denoted and

are different symbols for the same quantity.)When several forces act on a particle whose displacement is the total work

done on it is

6-20dWtotal ! FS

1# d!S " F

S

2# d!S " Á ! (F

S

1 " FS

2 " Á ) # d!S ! (©FS

i ) # d!Sd!

S,F

S

i

¢rS!S

¢rS ! ¢x in " ¢y jn;!S

W ! FS # !

S,

W ! !2

1FS # d!S

d!S

.FS

F||d!S

d!

dW ! F||d! ! F cosfd! ! FS # d!S

d!S

FS

BS

AS

BS

! (2.0in " 8.0jn)m.AS

! (3.0in " 4.0jn)mAS # B

S

A cosf ! (213 m) cos71° ! 1.2 m.BS

AS

(a) 1. Draw a sketch of the situation (Figure 6-19).

2. Express and in component form and takethe scalar product:

!S

FS

4.00 # 102 J!

! (100 N)(4.00 m) " 0(3.00 m)W ! FS # !

S! Fx¢x " Fy¢y

!S

! (4.00in " 3.00jn)m

FS

! (100in " 0jn)N

y

4.00 m

5.00 m

θF

O

x

3.00 m

F I G U R E 6 - 1 9

184 | C H A P T E R 6 Work and Kinetic Energy

Example 6-7 Pushing a Box

You push a box up a ramp using a constant horizontal force . For each distance ofalong the ramp, the box gains of height. Find the work done by for eachthe box moves along the ramp (a) by directly computing the scalar product from the

components of and where is the displacement, (b) by multiplying the product of themagnitudes of and by where is the angle between the direction of and the di-rection of (c) by finding (the component of in the direction of ) and multiplying itby (the magnitude of ), and (d) by finding (the component of in the direction of )and multiplying it by the magnitude of the force.

PICTURE Draw a sketch of the box in its initial and final positions. Place coordinate axes onthe sketch with the x axis horizontal. Express the force and displacement vectors in compo-nent form and take the scalar product. Then find the component of the force in the directionof the displacement, and vice versa.

SOLVE

FS

!S

!||!S

!!S

FS

F||!S

,FS

fcosf,!S

FS

!S

!S

,FS

5.00 mFS

3.00 m5.00 mFS

100-N

CHECK The component of in the direction of is This answer verifies our Part (b) result.

PRACTICE PROBLEM 6-6 (a) Find for and (b) Find A, B, and the angle between and for these vectors.

WORK IN SCALAR-PRODUCT NOTATIONIn scalar-product notation, the work dW done by a force on a particle over aninfinitesimal displacement is

6-18

INCREMENTAL WORK

where is the magnitude of and is the component of in the direction of The work done on the particle as it moves from point 1 to point 2 is

6-19

THE DEFINITION OF WORK

(If the force remains constant, the work can be expressed where is thedisplacement. In Chapter 3, the displacement is denoted and

are different symbols for the same quantity.)When several forces act on a particle whose displacement is the total work

done on it is

6-20dWtotal ! FS

1# d!S " F

S

2# d!S " Á ! (F

S

1 " FS

2 " Á ) # d!S ! (©FS

i ) # d!Sd!

S,F

S

i

¢rS!S

¢rS ! ¢x in " ¢y jn;!S

W ! FS # !

S,

W ! !2

1FS # d!S

d!S

.FS

F||d!S

d!

dW ! F||d! ! F cosfd! ! FS # d!S

d!S

FS

BS

AS

BS

! (2.0in " 8.0jn)m.AS

! (3.0in " 4.0jn)mAS # B

S

A cosf ! (213 m) cos71° ! 1.2 m.BS

AS

(a) 1. Draw a sketch of the situation (Figure 6-19).

2. Express and in component form and takethe scalar product:

!S

FS

4.00 # 102 J!

! (100 N)(4.00 m) " 0(3.00 m)W ! FS # !

S! Fx¢x " Fy¢y

!S

! (4.00in " 3.00jn)m

FS

! (100in " 0jn)N

y

4.00 m

5.00 m

θF

O

x

3.00 m

F I G U R E 6 - 1 9

184 | C H A P T E R 6 Work and Kinetic Energy

Example 6-7 Pushing a Box

You push a box up a ramp using a constant horizontal force . For each distance ofalong the ramp, the box gains of height. Find the work done by for eachthe box moves along the ramp (a) by directly computing the scalar product from the

components of and where is the displacement, (b) by multiplying the product of themagnitudes of and by where is the angle between the direction of and the di-rection of (c) by finding (the component of in the direction of ) and multiplying itby (the magnitude of ), and (d) by finding (the component of in the direction of )and multiplying it by the magnitude of the force.

PICTURE Draw a sketch of the box in its initial and final positions. Place coordinate axes onthe sketch with the x axis horizontal. Express the force and displacement vectors in compo-nent form and take the scalar product. Then find the component of the force in the directionof the displacement, and vice versa.

SOLVE

FS

!S

!||!S

!!S

FS

F||!S

,FS

fcosf,!S

FS

!S

!S

,FS

5.00 mFS

3.00 m5.00 mFS

100-N

CHECK The component of in the direction of is This answer verifies our Part (b) result.

PRACTICE PROBLEM 6-6 (a) Find for and (b) Find A, B, and the angle between and for these vectors.

WORK IN SCALAR-PRODUCT NOTATIONIn scalar-product notation, the work dW done by a force on a particle over aninfinitesimal displacement is

6-18

INCREMENTAL WORK

where is the magnitude of and is the component of in the direction of The work done on the particle as it moves from point 1 to point 2 is

6-19

THE DEFINITION OF WORK

(If the force remains constant, the work can be expressed where is thedisplacement. In Chapter 3, the displacement is denoted and

are different symbols for the same quantity.)When several forces act on a particle whose displacement is the total work

done on it is

6-20dWtotal ! FS

1# d!S " F

S

2# d!S " Á ! (F

S

1 " FS

2 " Á ) # d!S ! (©FS

i ) # d!Sd!

S,F

S

i

¢rS!S

¢rS ! ¢x in " ¢y jn;!S

W ! FS # !

S,

W ! !2

1FS # d!S

d!S

.FS

F||d!S

d!

dW ! F||d! ! F cosfd! ! FS # d!S

d!S

FS

BS

AS

BS

! (2.0in " 8.0jn)m.AS

! (3.0in " 4.0jn)mAS # B

S

A cosf ! (213 m) cos71° ! 1.2 m.BS

AS

(a) 1. Draw a sketch of the situation (Figure 6-19).

2. Express and in component form and takethe scalar product:

!S

FS

4.00 # 102 J!

! (100 N)(4.00 m) " 0(3.00 m)W ! FS # !

S! Fx¢x " Fy¢y

!S

! (4.00in " 3.00jn)m

FS

! (100in " 0jn)N

y

4.00 m

5.00 m

θF

O

x

3.00 m

F I G U R E 6 - 1 9

184 | C H A P T E R 6 Work and Kinetic Energy

Example 6-7 Pushing a Box

You push a box up a ramp using a constant horizontal force . For each distance ofalong the ramp, the box gains of height. Find the work done by for eachthe box moves along the ramp (a) by directly computing the scalar product from the

components of and where is the displacement, (b) by multiplying the product of themagnitudes of and by where is the angle between the direction of and the di-rection of (c) by finding (the component of in the direction of ) and multiplying itby (the magnitude of ), and (d) by finding (the component of in the direction of )and multiplying it by the magnitude of the force.

PICTURE Draw a sketch of the box in its initial and final positions. Place coordinate axes onthe sketch with the x axis horizontal. Express the force and displacement vectors in compo-nent form and take the scalar product. Then find the component of the force in the directionof the displacement, and vice versa.

SOLVE

FS

!S

!||!S

!!S

FS

F||!S

,FS

fcosf,!S

FS

!S

!S

,FS

5.00 mFS

3.00 m5.00 mFS

100-N

CHECK The component of in the direction of is This answer verifies our Part (b) result.

PRACTICE PROBLEM 6-6 (a) Find for and (b) Find A, B, and the angle between and for these vectors.

WORK IN SCALAR-PRODUCT NOTATIONIn scalar-product notation, the work dW done by a force on a particle over aninfinitesimal displacement is

6-18

INCREMENTAL WORK

where is the magnitude of and is the component of in the direction of The work done on the particle as it moves from point 1 to point 2 is

6-19

THE DEFINITION OF WORK

(If the force remains constant, the work can be expressed where is thedisplacement. In Chapter 3, the displacement is denoted and

are different symbols for the same quantity.)When several forces act on a particle whose displacement is the total work

done on it is

6-20dWtotal ! FS

1# d!S " F

S

2# d!S " Á ! (F

S

1 " FS

2 " Á ) # d!S ! (©FS

i ) # d!Sd!

S,F

S

i

¢rS!S

¢rS ! ¢x in " ¢y jn;!S

W ! FS # !

S,

W ! !2

1FS # d!S

d!S

.FS

F||d!S

d!

dW ! F||d! ! F cosfd! ! FS # d!S

d!S

FS

BS

AS

BS

! (2.0in " 8.0jn)m.AS

! (3.0in " 4.0jn)mAS # B

S

A cosf ! (213 m) cos71° ! 1.2 m.BS

AS

(a) 1. Draw a sketch of the situation (Figure 6-19).

2. Express and in component form and takethe scalar product:

!S

FS

4.00 # 102 J!

! (100 N)(4.00 m) " 0(3.00 m)W ! FS # !

S! Fx¢x " Fy¢y

!S

! (4.00in " 3.00jn)m

FS

! (100in " 0jn)N

y

4.00 m

5.00 m

θF

O

x

3.00 m

F I G U R E 6 - 1 9

Page 28: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Solution

Try It Yourself

The Scalar Product S E C T I O N 6 - 3 | 185

(b) Calculate where is the angle betweenthe directions of the two vectors as shown. Equatethis expression with the Part-(a) result and solvefor cos Then solve for the work:f.

fF! cosf,

so

and

4.00 ! 102 J"W " F! cosf " (100 N)(5.00 m)0.800

cosf "Fx¢x # Fy¢y

F!"

(100 N)(4.00 m) # 0(100 N)(5.00 m)

" 0.800

FS # !

S" F! cosf and F

S # !S

" Fx¢x # Fy¢y

(c) Find and multiply it by ! :F|| F|| " F cosf " (100 N)0.800 " 80.0 N

4.00 ! 102 JW " F||! " (80.0 N)(5.00 m) "

(d) Multiply F and where is the component of in the direction of F

S:

!S

!||!|| ,

4.00 ! 102 JW " F!|| " (100 N) (4.00 m) "

!|| " ! cosf " (5.00 m)0.800 " 4.00 m

CHECK The four distinct calculations give the same result for the work.

TAKING IT FURTHER For this problem, computing the work is easiest using the procedurein Part (a). For other problems, the procedure in Part (b), Part (c), or Part (d) may be the eas-iest. You need to be competent in using all four procedures. (The more problem-solving toolsyou have at your disposal, the better.)

Example 6-8 A Displaced Particle

A particle undergoes a displacement During this displacement a con-stant force acts on the particle. Find (a) the work done by the force,and (b) the component of the force in the direction of the displacement.

PICTURE The force is constant, so the work W can be found by computingCombining this with the relation we can find

the component of in the direction of the displacement.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) 1. Make a sketch showing and (Figure 6-20).F||!S

,FS

,

FS

FS # !

S" F||!,W " F

S # !S

" Fx¢x # Fy¢y.

FS

" (3.00in # 4.00jn)N!S

" (2.00in $ 5.00jn)m.

y

x

ˆ

ˆ ˆ

ˆ

O = 2.00 mi – 5.00 mj

F = 3.00 Ni + 4.00 Nj

F||

F I G U R E 6 - 2 0

2. Compute the work done W. $14.0 JW " FS # !

S"

(b) 1. Compute and use your result to find !.!S # !

Sso ! " 229.0 m!

S # !S

" 29.0 m2,

2. Using solve for F|| .FS # !

S" F||!, $2.60 NF|| " F

S # !S >! "

CHECK From Figure 6-20, we see that the angle between and is between 90° and 180°,so we expect both and the work to be negative. Our results are in agreement with thisexpectation.

TAKING IT FURTHER Nowhere in the wording of either the problem statement or thesolution of Example 6-8 does it say that the motion of the particle is along any particularpath. Because the force is constant, the solution depends on the net displacement butnot on the path taken. The path could be a straight-line path or a curved path (Figure 6-21)and not a word in the solution would have to be changed.

PRACTICE PROBLEM 6-7 Find the magnitude of and the angle between and !S

.FS

fFS

!S

,

F||

!S

FS

Path"

F I G U R E 6 - 2 1

Try It Yourself

The Scalar Product S E C T I O N 6 - 3 | 185

(b) Calculate where is the angle betweenthe directions of the two vectors as shown. Equatethis expression with the Part-(a) result and solvefor cos Then solve for the work:f.

fF! cosf,

so

and

4.00 ! 102 J"W " F! cosf " (100 N)(5.00 m)0.800

cosf "Fx¢x # Fy¢y

F!"

(100 N)(4.00 m) # 0(100 N)(5.00 m)

" 0.800

FS # !

S" F! cosf and F

S # !S

" Fx¢x # Fy¢y

(c) Find and multiply it by ! :F|| F|| " F cosf " (100 N)0.800 " 80.0 N

4.00 ! 102 JW " F||! " (80.0 N)(5.00 m) "

(d) Multiply F and where is the component of in the direction of F

S:

!S

!||!|| ,

4.00 ! 102 JW " F!|| " (100 N) (4.00 m) "

!|| " ! cosf " (5.00 m)0.800 " 4.00 m

CHECK The four distinct calculations give the same result for the work.

TAKING IT FURTHER For this problem, computing the work is easiest using the procedurein Part (a). For other problems, the procedure in Part (b), Part (c), or Part (d) may be the eas-iest. You need to be competent in using all four procedures. (The more problem-solving toolsyou have at your disposal, the better.)

Example 6-8 A Displaced Particle

A particle undergoes a displacement During this displacement a con-stant force acts on the particle. Find (a) the work done by the force,and (b) the component of the force in the direction of the displacement.

PICTURE The force is constant, so the work W can be found by computingCombining this with the relation we can find

the component of in the direction of the displacement.

SOLVE

Cover the column to the right and try these on your own before looking at the answers.

Steps Answers

(a) 1. Make a sketch showing and (Figure 6-20).F||!S

,FS

,

FS

FS # !

S" F||!,W " F

S # !S

" Fx¢x # Fy¢y.

FS

" (3.00in # 4.00jn)N!S

" (2.00in $ 5.00jn)m.

y

x

ˆ

ˆ ˆ

ˆ

O = 2.00 mi – 5.00 mj

F = 3.00 Ni + 4.00 Nj

F||

F I G U R E 6 - 2 0

2. Compute the work done W. $14.0 JW " FS # !

S"

(b) 1. Compute and use your result to find !.!S # !

Sso ! " 229.0 m!

S # !S

" 29.0 m2,

2. Using solve for F|| .FS # !

S" F||!, $2.60 NF|| " F

S # !S >! "

CHECK From Figure 6-20, we see that the angle between and is between 90° and 180°,so we expect both and the work to be negative. Our results are in agreement with thisexpectation.

TAKING IT FURTHER Nowhere in the wording of either the problem statement or thesolution of Example 6-8 does it say that the motion of the particle is along any particularpath. Because the force is constant, the solution depends on the net displacement butnot on the path taken. The path could be a straight-line path or a curved path (Figure 6-21)and not a word in the solution would have to be changed.

PRACTICE PROBLEM 6-7 Find the magnitude of and the angle between and !S

.FS

fFS

!S

,

F||

!S

FS

Path"

F I G U R E 6 - 2 1

Page 29: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Physics  211    Lecture  7,  Slide    24

Work done by a Spring

Page 30: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

Physics  211    Lecture  7,  Slide    25

I  am  confused  about  the  posi6ve  work  and  nega6ve  work  and  also  the  posi6ve  and  nega6ve  forces  for  the  spring  problems.  

In  this  example  the  spring  does  –ve  work  since F and  Δx  are  in  opposite  direc6on.  The  axes  don’t  ma`er.

Use  the  formula  to  get  the  magnitude  of  the  work

Use  a  picture  to  get  the  sign  (look  at  direc6ons)

Page 31: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

A  box  a`ached  at  rest  to  a  spring  at  its  equilibrium  length.  You  now  push  the  box  with  your  hand  so  that  the  spring  is  compressed  a  distance  D,  and  you  hold  the  box  at  rest  in  this  new  loca6on.

During  this  mo6on,  the  spring  does:

A)  Posi6ve  Work                          B)  Nega6ve  Work                          C)  Zero  work

Mechanics    Lecture  7,  Slide  26

Clicker Question

D

Page 32: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

A  box  a`ached  at  rest  to  a  spring  at  its  equilibrium  length.  You  now  push  the  box  with  your  hand  so  that  the  spring  is  compressed  a  distance  D,  and  you  hold  the  box  at  rest  in  this  new  loca6on.

During  this  mo6on,  your  hand  does:

A)  Posi6ve  Work                          B)  Nega6ve  Work                          C)  Zero  work

Clicker Question

Mechanics    Lecture  7,  Slide  27

D

Page 33: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

A  box  a`ached  at  rest  to  a  spring  at  its  equilibrium  length.  You  now  push  the  box  with  your  hand  so  that  the  spring  is  compressed  a  distance  D,  and  you  hold  the  box  at  rest  in  this  new  loca6on.

During  this  mo6on,  the  total  work  done  on  the  box  is:

A)  Posi6ve                    B)  Nega6ve                C)  Zero

Clicker Question

Mechanics    Lecture  7,  Slide  28

D

Page 34: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

= GMem

1r2� 1

r1

!

Mechanics    Lecture  7,  Slide  29

W =

~r2Z

~r1

~F(~r) · d~r = �r2Z

r1

GMemr2 dr

Page 35: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

W = GMem

1r2� 1

r1

!A)  Case  1                  B)  Case  2                    C)  They  are  the  same

In  Case  1  we  send  an  object  from  the  surface  of  the  earth  to  a  height  above  the  earth  surface  equal  to  one  earth  radius.

In  Case  2  we  start  the  same  object  a  height  of  one  earth  radius  above  the  surface  of  the  earth  and  we  send  it  infinitely  far  away.  

In  which  case  is  the  magnitude  of  the  work  done  by  the  Earth’s  gravity  on  the  object  biggest?

Clicker Question

Case  1 Case 2

Mechanics    Lecture  7,  Slide  30

Page 36: Lecture 7 (YY/MM/DD) - SFU.ca · Lecture 7 Today’s(Concepts: Work(&(Kine6c(Energy Mechanics((Lecture(7,(Slide(1 Name _____ Date (YY/MM/DD) _____/_____/_____ SFU e-mail_____@sfu.ca

W = GMem

12RE� 1

RE

!= �GMem

2RE

W = GMem

11 �

12RE

!= �GMem

2RE

Case  1 Case  2

Case  1:

2RE

RE

Same!

Clicker Question Solution

Mechanics    Lecture  7,  Slide  31

Case  2: