Lecture -7 Ice

32
Internal Combustion Engines 1 Lectur

Transcript of Lecture -7 Ice

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 1/32

Internal CombustionEngines

1

Lectur

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 2/32

Air Standard Cycles

1. Carnot - maximum cycle efficiency

2. Otto - spark-ignition (SI) engine3. Diesel - compression-ignition (CI) engine4. Brayton - gas turbine

2

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 3/32

Air Standard Cycles

• Air standard cycles are idealized cyclesbased on

the following approximations:

– the working fluid is air (ideal gas)– all the processes are internally reversible

– the combustion process is replaced by

heat input from an external source

– heat rejection is used to restore fluid toinitial

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 4/32

Thermodynamic Cycles

• Air-standard analysis is used to perform elementary analysesof IC engine cycles.

• Simplifications to the real cycle include:1) Fixed amount of air (ideal gas) for working

fluid 2) Combustion process not considered3) Intake and exhaust processes not

considered4) Engine friction and heat losses not

considered5) Specific heats independent of temperature

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 5/32

SI Engine Cycle vs Thermodynamic Otto Cycle

Fuel/Air Mixture

CompressionStroke

Q in

TC

Const volumeheat addition Process heat rejection

Process Process

FUEL

IR

IntakeStroke

Air

5

CompressionProcess

Ignition

Power Stroke

Expansion

CombustionProducts

ExhaustStroke

Q out

BC

Const volume

A

ActualCycle

OttoCycle

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 6/32

Air-Standard Otto cycle

Isentropic compressionConstant volume heat additionIsentropic expansionConstant volume heat rejection

Q in

Q out

v 1BC

Process 1 2Process 23

Process 34

Process 41

TC BC

6

Compression ratio:

v1 v4r = =

v2 v3

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 7/32

In Otto cycle, thecombustion is so rapid

that the piston does notmove during the process,and therefore,combustion is assumed totake place at constant

volume.Otto cycle efficiency

T (T / T - 1)T (T / T - 1)

7

q in

wnetη = = 1q in

qout = 1 1 4 1

2 3 2= 1

T - TT - T

4 1

3 2

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 8/32

Otto Cycle (Contd.)For isentropic process:

pv k = constantFor process 1-2:

p1 v1k = p 2 v2

k

RT2

v1 p 2 v2

2

v1 v 2

vk v1

T2=

T1

RT1

v1

with k=c p/cv

T2 v1=

T1 v2

8

k

= =v k p1

T2

= T1

k

2

⎛ ⎞

⎝ ⎠

k - 1v1

⎜v ⎟2

= ⎜ ⎟

kv1- 1

vk - 1

2

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 9/32

Since m = constant:k - 1 k - 1

⎜V ⎟ = rk - 1

TDC

For process 3-4, using the same analysis:VBD C ⎞VT D C

T3 T3or =

T4 T2

η = 1 -

T2

T

T3

T4

T2=

T1

1r k - 1

V1

T4

T1

9

⎛ ⎜⎝

⎛ ⎞ ⎛

⎝ v ⎠ ⎝ v1

k - 1

= ⎜ ⎟ = ⎜2

⎞ ⎛ ⎞

⎠ ⎝ ⎠VBD C

⎟ = ⎜ ⎟

k - 1

⎟ = r k - 1

k - 1⎛ ⎞

⎝ ⎠V4

⎜V ⎟3

Then

= ⎜ ⎟ = ⎜

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 10/32

Increasing Compression RatioIncreases the Efficiency

TypicalCompression

Ratios forGasoline Engines

10

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 11/32

Higher Compression Ratios?

• Higher compression ratio leads toauto-ignition (without spark)

• Causes knock • Engine damage• Thus, there is an upper limit of high

compression ratio

11

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 12/32

Engine Cycle and the Thermodynamic Diesel Cycle

A

IR

Air

Intake CompressionStroke Stroke

Q in

Air

Compression Const pressureProcess heat addition

Process 12

Fuel injectedat TC

CombustionProducts

Power ExhaustStroke Stroke

Q out

BC

Expansion Const volumeProcess heat rejection

Process

CI

ActualCycle

DieselCycle

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 13/32

Air-Standard Diesel cycle

Process 12

Isentropic compressionProcess 2 3 Constant pressure heat additionProcess 3 4 Isentropic expansionProcess 4 1 Constant volume heat rejection

Q in

Q out

v 2TC

v 1BC

BC

13

TC

Cut-off ratio:

v3r c =

v2

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 14/32

Due to ignition delay and finite timerequired

for fuel injection, combustionprocesscontinues till the beginning of powerstroke.This keeps the cylinder pressureat peak levels for a longer period.Therefore, thecombustion process can beapproximatedas constant pressure heataddition.Remaining processes are similar tothat of Otto cycle.

qout

q in

14

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 15/32

• Cycle efficiency,

η = = 1 -

wnet

q in

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 16/32

Cutoff Ratio , r =

Compression Ratio , r =

Expansion Ratio , r =

Cutoff Ratio Χ Expansion Ratio = Compression Ratio

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 17/32

15

V 1

V 3V 2c

V 4V 3

e

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 18/32

assuming constant specific heats:

(T / T - 1)

p 3 2 3 2 2 3 2

for isentropic process 1-2:

⎛ ⎞=

T2 ⎜v1

for constant pressure process 2-3: p 2 = p 3

ideal gas law:T3 v3

= = rcT2 v2

16

η = 1 = 1

v3

RT2 RT3= =>

v2

(T - T )k(T - T

4 1 4 1c (T - T)

v 4 1 = 1

k -

1T1 v2

T k(T / TT1

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 19/32

for isentropic process 3-4:k - 1

v 4

⎜v ⎟3

⎛ v3 ⎞ ⎛ v

⎝ ⎠ ⎝ r - 1

r k(r - 1)k

≥ 1, for given rc

diesel

but diesel cycle has higher r!

T3

T4

=>v3

v2

T2=

T1

T4

T1

T3==

T2

then,

sin ce

η = 1

k - 1

⎜ ⎟ = ⎜⎜v ⎟

⎜v

2

⎛ ⎞

⎝ ⎠

k - 1v2

⎜v ⎟3

⎜ ⎟

k - 1v1 ⎞⎟ =

v3 ⎟ ⎠

⎛ ⎜⎝

k T2

vk -1

v1- 1

T12

= 3 3

⎛ v3 ⎞

⎝ ⎠

k - 1

⎜ ⎟ =⎜v ⎟2

⎛ ⎞

⎝ ⎠= ⎜ ⎟ = ⎜

k

= r ck

17

⎞⎟⎟

3

2

≤ η

r - 1k(r- 1)η

kc1

k -1c

c

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 20/32

Thermal Efficiency

r k

- 1c

r - 1c

η Otto = 1 -

Note that the term in the square bracket isalways largerthan one so for the same compression ratio( r) , theDiesel cycle has a lower thermal efficiencythan theOtto cycle.

1

r k -1

η D ie sel = 1 -1

r k - 1

1⋅

k

Recall,

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 21/32

Note: CI needs higher r compared to SI toignite fuel

18( )⎤( )⎦

⎡⎢

⎢⎣

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 22/32

Remark

When r c (= v 3 /v 2 ) 1 the Diesel cycleefficiency

approaches the efficiency of the Otto cycle

Compression ratio = 10-22 (Diesel)Compression ratio = 6-10 (Otto)Thus, efficiency of Diesel Cycle is greater than Otto Cycle.

Higher efficiency and low cost fuel makesdieselengine suitable for larger power units such

aslarger ships, heavy trucks, power

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 23/32

Diesel Cycle Otto Cycle

The onlydifferenceis inprocess2-3

20

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 24/32

Remark

Both Otto cycle (Constant volume

heat addition) and Diesel cycle (Constantpressure

heat addition) are over-simplisticand

unrealistic . In actual case, combustiontakesplace neither at constant volume

(timerequired for chemical reactions), nor

at constant pressure (rapiduncontrolled

combustion).

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 25/32

Modern CI Engine Cycle and the Thermodynamic Dual Cycle

Fuel injectedat 15 o bTC

I R

Air

Intake Compressio n Power Stroke Stroke Stroke

Q in Q in

Air TC

Const pressureheat addition

Process

A

ActualCycle

DualCycle

Const volumeheat addition

Process

CompressionProcess

CombustionProducts

ExhaustStroke

Q out

BC

Expansion Const volumeProcess heat rejection

Process22

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 26/32

Dual Cycle

Process 1 2 Isentropic compressionProcess 2 2.5 Constant volume heat addition

Process 2.5 3 Constant pressure heat additionProcess 3 4 Isentropic expansionProcess 4 1 Constant volume heat rejection

Q in3

Q in2.5

4

Q out

23

2.5

2

2

1

3

4

1

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 27/32

Thermal Efficiency

u4 - u1

(u2 .5 - u2) + ( h3 - h2.5 )

α r ck - 1(α - 1) + αk (r c - 1)⎥

P 2.5

v2 .5 and α = P 2

Note, the Otto cycle (r c=1) and the Diesel cycle ( α =1) are special cases:

η Diesel = 1 -

const c V

1r k - 1

η D ual =1 -

cycle

η Dual

=1 -

η Otto = 1 - 1r k -1

Qout m

Q in m

=1 -1

r k - 1

v3

=

⎡1

⎢k ⎣

⎦(r ck

(r c -1)⎥

24

⎢⎣const c v

where c

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 28/32

The use of the Dual cycle requires information about either:i) the fractions of constant volume and constant pressure heat

addition (common assumption is to equally split the heataddition), or

ii) maximum pressure P 3.

For the same inlet conditions P 1, V1 and the same compression ratio:

η Otto > η Dual > η Diesel

For the same inlet conditions P 1, V1 and the same peak pressure P 3

(actual design limitation in engines):

η Diese l > η Dual > ηotto

25

F h i l di i P V

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 29/32

For the same inlet conditions P 1, V1

and the same compression ratio P 2 /P 1:

“x” →“2.5”

P o

Specific Volume

Entropy

For the same inlet conditions P 1, V1

and the same peak pressure P 3:

P max

P o

Specific Volume

Tmax

Entropy

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 30/32

References11 .. CrouseCrouse WH,WH, andand AnglinAnglin DLDL , (1985), Automotive Engines ,

Tata McGraw Hill.22 .. EastopEastop TD,TD, andand McConkeyMcConkey A,A, (1993), Applied Thermodynamics for Engg.

Technologists , Addison Wisley.33 .. FergusanFergusan CR,CR, andand Kirkpatrick Kirkpatrick AATT ,, (2001), InternalCombustion Engines , John

Wiley & Sons.44 .. GanesanGanesan VV ,, (2003), Internal Combustion Engines , Tata

McGraw Hill.55 .. GillGill PW,PW, SmithSmith JH, JH, andand ZiurysZiurys EJEJ ,, (1959), Fundamentals of I. C . Engines , Oxford

and IBH Pub Ltd .66 .. HeislerHeisler H,H, (1999), Vehicle and Engine Technology, ArnoldPublishers.77 .. HeywoodHeywood JB, JB, (1989), Internal Combustion EngineFundamentals , McGraw Hill.88 .. HeywoodHeywood JB, JB, aa nn dd SherSher E,E, (1999), The Two-Stroke CycleEngine , Taylor & Francis.99 .. Joel Joel R,R, (199(199 6)6) ,, Basic Engineering Thermodynamics, Addison-Wesley.11 00 .. MathurMathur ML,ML, andand SharmaSharma RP,RP, (1994), A Course in

I t l C b ti E gi

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 31/32

Internal Combustion Engines,Dhanpat Rai & Sons, New Delhi.

1111 .. Pulkrabek Pulkrabek WW,WW, (1997), Engineering Fundamentals of the I .C . Engine , Prentice Hall.11 22 .. RogRog ee rsrs GFC,GFC, andand MayhewMayhew YR YR, (1992), EngineeringThermodynamics , Addison

Wisley .11 33 .. SriSri nn ivasanivasan S,S, (2001), Automotive Engines , Tata McGrawHill.11 44 .. StoneStone R,R, (1992), Internal Combustion Engines , TheMacmillan Press Limited, London.

11 55 .. TaylorTaylor CF,CF, (1985), The Internal-Combustion Engine inTheory and Practice , Vol.1 & 2, The MIT Press, Cambridge, Massachusetts.

27

8/6/2019 Lecture -7 Ice

http://slidepdf.com/reader/full/lecture-7-ice 32/32

Web Resources1 . http://www.mne.psu.edu/simp son/courses2 . http://me.queensu.ca/courses3 . http://www.eng.fsu.edu4 . http://www.per sonal.utulsa.edu5 . http://www.glenro seffa.org/6 . http://www.howstuffworks.com7 . http://www.me.psu.edu8 . http://www.uic.edu/classes/me/ me429/ lecture-air-cyc-web

%5B1%5D.ppt9 . http://www.osti.gov/ fcvt/HETE2004/Stable.pdf 10 . http://www.rmi.org/s itepages/pid457.php11 . http://www.tpub.co m/content/engine/14081/css12 . http://webpages.csus.edu13 . http://www.nebo.edu/misc/learning_resources/ ppt/6-1214 . http://netlogo.modelingcomplexity.org/Small_engin es.ppt15 . http://www.ku.edu/~kunrotc/academics/ 180/Lesson

%2008%20Diesel.ppt

16 . http://navsci.berkeley.edu/NS10/PPT/17 . http://www.career-center.org/ secondary/powerpoint/sge-parts.ppt

18 . http://mcdetflw.tecom.usmc.mil19 . http://ferl.becta.org.uk/display.cfm20 .

http://www.eng.fsu.edu/ ME_senior_design/2002/ folder14/ccd/Combustion