Lecture 7 - Hen i - Cc

7
Lecture Lecture Lecture Lecture 7 7 7– – Heat exchanger Heat exchanger Heat exchanger Heat exchanger network I network I network I network I Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 2 The The The The “Onion diagram Onion diagram Onion diagram Onion diagram” Reactor Separation & recycle Heat exchange network Utilities (Linnhoff et al., 1982) Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 3 Lecture outline Lecture outline Lecture outline Lecture outline Single heat transfer unit vs. a network (multiple units) Heat transfer composite curves Hot & cold utility targets The famous name “pinch analysisCopyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 4 Recommended texts Recommended texts Recommended texts Recommended texts Smith, R. (2005). Chemical Process Design and Integration. New York: John Wiley & Sons (heat exchanger network synthesis). Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., & Marshall, R. H. (1982). A User Guide on Process Integration for the Efficient Use of Energy. Rugby: IChemE (latest edition by Ian Kemp).

Transcript of Lecture 7 - Hen i - Cc

Page 1: Lecture 7 - Hen i - Cc

LectureLectureLectureLecture 7777 –––– Heat exchangerHeat exchangerHeat exchangerHeat exchanger

network Inetwork Inetwork Inetwork I

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 2

TheTheTheThe ““““Onion diagramOnion diagramOnion diagramOnion diagram””””

Reactor

Separation &

recycle

Heat exchange

network

Utilities(Linnhoff et al., 1982)

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 3

Lecture outlineLecture outlineLecture outlineLecture outline

� Single heat transfer unit vs. a

network (multiple units)

� Heat transfer composite curves

� Hot & cold utility targets

� The famous name “pinch

analysis”

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 4

Recommended textsRecommended textsRecommended textsRecommended texts

� Smith, R. (2005). Chemical Process Design and Integration. New York: John Wiley & Sons (heat exchanger network synthesis).

� Linnhoff, B., Townsend, D. W., Boland, D., Hewitt, G. F., Thomas, B. E. A., Guy, A. R., & Marshall, R. H. (1982). A User Guide on Process Integration for the Efficient Use of Energy. Rugby: IChemE (latest edition by Ian Kemp).

Page 2: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 5

Evolution of heat recoveryEvolution of heat recoveryEvolution of heat recoveryEvolution of heat recovery pinch analysispinch analysispinch analysispinch analysis

1970s Minimum hot and cold utility targeting

1990 Energy-area trade off (Supertargeting)

1984 Surface area targeting

1993 Distillation column integration

1993 Total site analysis

1983 The pinch design method (PDM)

1989 Heat integration for batch processes

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 6

Some important termsSome important termsSome important termsSome important terms

� Hot streams

� Stream to be cooled

� Sources of heat

� Cold streams

� Stream to be heated

� Sinks of heat

� Supply temp – initial T

� Target temp – final TSupply T Q

TSupply T

Hot stream

Target T

Cold stream

Target T

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 7

2 stream heat recovery2 stream heat recovery2 stream heat recovery2 stream heat recovery

–1240160Hot2

1411040Cold1

∆H

(MW)

Target temp, TT

(ºC)

Supply temp,

TS (ºC)TypeSteam

� Utility available for use: � Steam @ 180ºC

� Cooling water @ 20ºC

� Without heat recovery:� Heat Stream 1 with steam: 14 MW

� Cold Stream 2 with cooling water: 12 MW

� Comment: high energy cost!

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 8

2 stream heat recovery2 stream heat recovery2 stream heat recovery2 stream heat recovery

–1240160Hot2

1411040Cold1

∆H

(MW)

Target temp, TT

(ºC)

Supply temp,

TS (ºC)TypeSteam

∆Tmin = 10ºC

QHmin = 3

QCmin = 1

QREC = 11

Page 3: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 9

Larger value ofLarger value ofLarger value ofLarger value of ∆∆∆∆TTTTminminminmin

� Important features:� Vertical shifting is prohibited

� Horizontal shifting is allowed

� Energy targets:� Minimum hot utility: QHmin

� Minimum cold utility: QCmin

QHmin = 4

QCmin = 2

QREC = 10

∆Tmin = 20ºC

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 10

A more complex problemA more complex problemA more complex problemA more complex problem

–30.0

27.0

–31.5

32.0

∆H

(MW)

0.2018020Cold1. Reactor 1 feed

0.1540250Hot2. Reactor 1 product

0.2580200Hot4. Reactor 2 product

0.30230140Cold3. Reactor 2 feed

Heat capacity flowrate, CP(MW.K-1)

Target temp,

TT (ºC)

Supply temp,

TS (ºC)

TypeSteam

Reactor 1Feed 1

20ºC

Reactor 2Feed 2

140ºC

Off gas, 40ºC

Product 1, 40ºC

180ºC

40ºC

250ºC

230ºC 200ºC Product 2

80ºC

Note: Heat capacity flowrate, CP = m.Cp

( )STpp

TTmCTmCQ −=∆=

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 11

Hot composite curveHot composite curveHot composite curveHot composite curve

H (MW)

T (ºC)

31.5 30.0

250

200

80

40

T (ºC)

48 7.5

250

200

80

40

6

61.5

H (MW)

61.5

CP = 0.15

CP = 0.25

CP = 0.15

CP = 0.15

CP = 0.4

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 12

Cold composite curveCold composite curveCold composite curveCold composite curve

CP = 0.2

CP = 0.3230

180

140

20

32 27

59

T (ºC)

H (MW)

T (ºC)

20 1524 H (MW)

59

CP = 0.2

CP =

0.5

230

180

140

20

CP = 0.3

Page 4: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 13

Hot & cold composite curvesHot & cold composite curvesHot & cold composite curvesHot & cold composite curves

H (MW)

T (ºC)

QREC = 51.1 QHmin = 7.5QCmin = 10

∆Tmin = 10ºC

Pinch

230

20

250

40

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 14

With largerWith largerWith largerWith larger ∆∆∆∆TTTTminminminminQHmin = 7.5

QCmin = 10

∆Tmin = 10ºC

QHmin = 11.5

QCmin = 14

∆Tmin = 20ºC

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 15

∆∆∆∆TTTTminminminmin & economic trade& economic trade& economic trade& economic trade----offoffoffoff

H

T

H

T

H

T

∆Tmin

Cost

Total

Energy

CapitalminTUAQ ∆=

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 16

A note onA note onA note onA note on ∆∆∆∆TTTTminminminmin

� Care should be taken not to ignore practical constraints in setting ∆Tmin

� To achieve pure ∆Tmin requires heat exchangers that exhibit pure countercurrent flow

� Shell-and-tube: not possible � ∆Tmin < 10ºC should be avoided

� Plate heat exchanger: ∆Tmin ~ 5ºC or less

Page 5: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 17

Working sessionWorking sessionWorking sessionWorking session

� Plot a heat transfer composite curves

� ∆Tmin = 10ºC

� Utility: � Steam @ 200ºC

� Cooling water @ 15ºC

1.5

4.0

3.0

2.0

Heat capacity flowrate CP

(kW/ºC)

60170Hot2

14080Cold3

30150Hot4

13520Cold1

∆H

(kW)

Target temp, TT (ºC)

Supply temp,

TS (ºC)TypeSteam

(Linnhoff et al., 1982)

230

-330

240

-180

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 18

H4

H2

C3 C1

Working sessionWorking sessionWorking sessionWorking session

160

20

100 700

140

200

120

500

80

300 400 600

40

60

100

180

0

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 19

SolutionsSolutionsSolutionsSolutionsQHmin = 20

QCmin = 60

∆Tmin = 10ºC

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 20

Additional taskAdditional taskAdditional taskAdditional task� Proof that the CP for composite curve is the

summation of CP of individual streams.

� Locate the new energy targets for the following value of ∆Tmin:

� 30ºC

� 50ºC

Page 6: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 21

ResultsResultsResultsResults

∆Tmin = 30ºC

QHmin = 110

QCmin = 150

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 22

The heat recovery pinchThe heat recovery pinchThe heat recovery pinchThe heat recovery pinch

H (MW)

T (ºC)

∆Tmin

Pinch

QHmin

QCmin

Heat sink

Heat source

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 23

Possible heatingPossible heatingPossible heatingPossible heating

H (MW)

T (ºC)

Pinch

Heat source

Possible

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 24

Impossible heatingImpossible heatingImpossible heatingImpossible heating

H (MW)

T (ºC)

Pinch

Heat source

Impossible

Page 7: Lecture 7 - Hen i - Cc

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 25

Heat transfer across pinchHeat transfer across pinchHeat transfer across pinchHeat transfer across pinch

H (MW)

T (ºC)QHmin +XP

QCmin+XP

Heat sink

Heat source

XP

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 26

Cold above the pinchCold above the pinchCold above the pinchCold above the pinch

H (MW)

T (ºC)QHmin +XP

QCmin

Heat sink

Heat source XP

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 27

Heat below the pinchHeat below the pinchHeat below the pinchHeat below the pinch

H (MW)

T (ºC)QHmin

QCmin+XP

Heat sink

Heat source

XP

Copyright@Dominic Foo H82PLD - Plant Design Lecture 7 - 28

HeuristicHeuristicHeuristicHeuristic� To achieve energy targets, must not transfer heat

across the pinch by:

� Process-process heat transfer

� Inappropriate use of utility

DON’T COLD ABOVE THE PINCH!

DON’T HEAT BELOW THE PINCH!