Lecture 7: Constrained Optimization: Necessary and ...

36
Copyright ©1991-2009 by K. Pattipati 1 Lecture 7: Constrained Optimization: Necessary and Sufficient Conditions Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: [email protected] (860) 486-2890 Fall 2009 October 13, 2009 ECE 6437 Computational Methods for Optimization

Transcript of Lecture 7: Constrained Optimization: Necessary and ...

Copyright ©1991-2009 by K. Pattipati1

Lecture 7: Constrained Optimization:

Necessary and Sufficient Conditions

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut Contact: [email protected] (860) 486-2890

Fall 2009

October 13, 2009

ECE 6437Computational Methods for Optimization

Copyright ©1991-2009 by K. Pattipati2

Outline of Lecture 7

Necessary and Sufficient Conditions

Methods of Specifying constraint set ()

Basic Result: Necessary Conditions of Optimality

Examples

Equality Constraints

Economical Interpretation of Lagrange Multipliers

Copyright ©1991-2009 by K. Pattipati3

“ Minimize f(x) subject to

• x* is a local minimum of f over if a scalar > 0

• x* is a global minimum of f over if

• When f and are convex, local minimum global minimum

Methods of specifying constraint set

• is non-empty, convex, and closed subset of Rn

• f(x) is continuously differentiable over

• Difficulty with an open set

• Difficulty with a non-convex set: Nec. conditions of optimality fail!!

; constraint setnx R

Constrained Minimization Problem

* *( ) ( ) ,|| ||f x f x x x x

*( ) ( )f x f x x

2 * *min , { | 0 1}; isundefined; 0x x x x x

Copyright ©1991-2009 by K. Pattipati4

Set constraints:

• Non negative orthant constraints

• Simple bounds

Equality constraints:

• Simplex constraints

• Some applications: routing, allocation problems

convexx

Methods of Specifying - 1

{ | 0; 1,2,..., }ix x i n

{ | ; 1,2,..., }i i ix x i n

x2

x1

{ | ( ) 0; 1,2,..., }ix h x i n

1

{ | ; 0}n

i i

i

x x r x

x2

x1 (3,0)

(0,3

) x1+x2=3

14

3

2

5Origin of OD pair

Destination of OD pair

wr

wr

x4

x3

x2

x1

Copyright ©1991-2009 by K. Pattipati5

• Linear equality constraints:

• Nonlinear equality constraints:

For x to be convex, equality constraints must be linear

Inequality constraints

• Linear inequality constraints

• Nonlinear inequality constraints

, allpathstraversing

( , )

min ( ) ( )

. .

0 ,

w

ij p

i jpi j

p w

p P

p w

D x D x

s t x r w W

x p P w W

allpathsptraversing( , )

ij p

i j

F x

{ | 0; }ix x Ax b

2 2

1 2 1 2{ | 3; , 0}x x x x x

{ | ( ) 0; 1,2,.., }ix g x j r

{ | 0; }x x Ax b 2 2

1 2{ | 3; 0}ix x x x

x1

x2

convex

Linear inequality

constraints

x1

x2

Not convex

Non-linear equality

constraints

x1

x2

Non-linear inequality

constraints

Methods of Specifying - 2

3

3

3

3

Copyright ©1991-2009 by K. Pattipati6

Recall unconstrained case: f(x*) = 0

What happens when there are constraints?

Let us take a simple case where = {x| xi } and x is scalar

• Case 1: x* =

• Case 2: If < x* <

Necessary:2f(x*) 0;

Sufficiency: 2f(x*) > 0

f(x)

x

f(x)

x

x*

f(x)

x

** * *( )

| 0 0 ( )( ) 0Tdf x

and x x x f x x xdx

*

*

* *

| 0 can bepositiveor negative

( )( ) 0

x

T

dfand x x

dx

f x x x x

First-order Conditions of Optimality - 1

Copyright ©1991-2009 by K. Pattipati7

• Case 3: x* =

Basic Result

• 1. If x* is a local minimum of f over a convex set Rn, then

• 2. If f(x) is convex, then the condition is also sufficient

*

*

* *

( )| 0 0

( )( ) 0

x x

T

df xand x x x

dx

f x x x x

* * * * 0( )( ) 0, [ ( ),( )] 90T

f x x x x f x x x

f(x*)

x

x*

= convex

Convexity of is critical

x*

f (x*)

First-order Conditions of Optimality - 2

Copyright ©1991-2009 by K. Pattipati8

Proof

• 1. Suppose x Then, from the mean value

theorem, for an [0,1] s.t.

• 2. Since f(x) is convex

Proof of Basic Result

* * * * * *

* * *

* * *

( ( )) ( ) ( ( ))( )

Forsufficientlysmall , ( ( ))( ) 0

( ( )) ( ) a contradiction

T

T

f x x x f x f x x x x x

f x x x x x

f x x x f x

* * *

* *

* *

( ) ( ) ( )( );

Now,since ( )( ) 0

( ) ( ) isa minimum

T

T

f x f x f x x x x

f x x x

f x f x x x

* *( )( ) 0.T

f x x x

f(x)

x

Copyright ©1991-2009 by K. Pattipati9

Examples:

• Example 1:

Know at optimum

Specialization of First-order Conditions - 1

** * *

1

* *

* * * *

( )( )( ) 0 ; ( ) 0

0 0;

1 30 0; , ; ;

2 2

nT

i i

i i

i k k

i

i k k i i i i

i

f xf x x x x x x x

x

fx Let x x k i

x

fx To show this let x x k i and x x x x

x

{ | 0; 1,2,..., }non-negativeorthantix x i n

x1

x2

f(x*)

x1

x2 f(x*)

Copyright ©1991-2009 by K. Pattipati10

• Example 2:

• Example 3:

{ | }i ix x *

*

*

0;

0;

0;

i i

i i

i

i i

xf

xx

x

1

{ | 0, }optimizationoverasimplexn

i i

i

x x x r

x2

x1

.4

Specialization of First-order Conditions - 2

3

All coordinates with positive allocation at the optimum

must have equal or minimal partial cost derivative

1

2 2

1 2 1 2

* *

1 2

1*

2 1 2

* **

{ | 0, }optimization over a simplex

min ( 4) . . 3 0

( , ) (3,0)

2( 4) 2( ) ;

2 0

( ) ( )In general 0

n

i i

i

i

i

i j

x x x r

x x s t x x and x

x x

x f ff x

x x x

f x f xx j

x x

Copyright ©1991-2009 by K. Pattipati11

• Example 4: Projection on a convex set

– Let be a closed convex set and let z be a fixed vector in Rn

– “projection of z onto involves finding a point x* in nearest to z”.

– Mathematically,

– 4.1 z

**

1 1

* * *

1

* * * **

( )( ) 0 0with

Suppose 0. Pick 0, . .

( ) ( ) ( ) ( )0

n n

i i i i

i ii

n

i i j i j i

i

i

j i i j

f xx x x x r

x

x x x x x s t x r

f x f x f x f xx j

x x x x

21min ( ) || || . .

2x

f x z x s t x

x* x1+x2=r

Specialization of First-order Conditions - 3

x*

z =0

Copyright ©1991-2009 by K. Pattipati12

– 4.1. 2

1

2 2

1 1 2 1 1 1 2 1

* 1 21 1

* 1 2 1 22 2

2

**

*

1min || || . .

2

1 1min ( ) ( ) 0

2 2

2 2 2

;2 2 2 2

1In general,min || || ( ) ( ) 0

2

( )( ) 0

n

i

i

T

T TT

z x s t x r

z x z r x z x z r x

z zr rx z z

z z z zr rx z z z

z x x e r z x e

e z x e z rn e z x

n n

x

*; ( )

I P

T T Te z r r e z ee r

z e z e e z z e z x I z en n n n n

Projection on a Convex Set - 1

*

* * *

*

( )

( )

( )

TT

T T

T

z x e

z x x e x

e x e z e

e z n r

Copyright ©1991-2009 by K. Pattipati13

Definition

TT ee

A e Pn

* 1

* * *

( );

( ) ( )

0 ( ) ( ) ( )

n

Ti

i

T

zr e z

x e z z e zn n n

r ee re I z e I P z

n n n

r x I P z z x Pz x I P z

* 2

* *

* *

* *

arg min || || . .

Fromnecessaryconditions

( )( ) 0

-( - ) ( ) 0

( - ) ( ) 0

x

T

T

T

x z x s t x

f x x x

z x x x

or z x x x

R(AT)

N(A)

z

Pz

(I-P)z.

z-x*

x*

Projection on a Convex Set - 2

x*

z

x

Copyright ©1991-2009 by K. Pattipati14

– 4.2.

*

* 2

* ** *

** 1

* 1 1

1

1 2

1min || || ; . .

2

1( , ) ( ) ( ) ( )

2

| 0 ( ) 0

since ( ) ( )

[ ( ) ] ( )

( ) ( )

( ) Projection matrix ;

TT

T T

x x

T

T T T T

T T

T T n

z x s t Ax b

L x z x z x Ax b

Lz x A x z A

x

Ax b AA Az b

x I A AA A z A AA b

I P z A AA b

P A AA A P P P

*

*

*

; 1

Recall { | 0} ( )

( )

Projection of onto ( )

Projection of onto ( )T

P n

x Ax N A

x I P z

x z N A

P z z x z R A

A is an mxn matrix

m<n

Rank(A)=m

Projection on a Convex Set - 3

Recall ( ) ( )TN A R A

Copyright ©1991-2009 by K. Pattipati15

• Suppose m=1 aTx = 0 defines an (n-1) dimensional subspace M

perpendicular to a

• Suppose aT = (1,1)

• Recall that a hyperplane H in Rn is defined by

*

* *

( ) ;

||

T T

T T

T

T

a a a ax I z I P z P

a a a a

a az x z Pz z x a

a a

1 2

1* 1 2

2 2 1

1 2

1 2

1 2

1 1

12 2 2

1 1 12

2 2 2

12

12

2

z z

z z zx

z z z

z z

z zPz

z z

{ | }T

H x a x b

Pzz ax*

M

Projection on a Convex Set - 4

Copyright ©1991-2009 by K. Pattipati16

– Every hyperplane H can be written as

where is any vector in H, i.e.,

– Example:

• Supporting hyperplane: For every convex set Rn and every

boundary point , a hyperplane that supports at , i.e.,

Supporting and Separating Hyperplanes

H x M

x Ta x b

1 2 1 2

1

2 ˆ{ | 1} { | 0}1

2

ˆ

x

H x x x x x x

x x x

x xT Ta x a x x

ba

M

x..

x

1

2

x

Supporting hyperplane

Separating

hyperplane

Copyright ©1991-2009 by K. Pattipati17

• Separating hyperplane: If 1 and 2 are two disjoint convex sets, then

a hyperplane that separates them

Equality constraints

We will provide intuitive proofs first and then provide geometric

interpretations later

• Special case:

Equality Constraints

1 2,T Ta x a y x y

1 2

min ( ) . . ( ) 0, 1,2,...,

( )and ( )aredifferentiablein

,

min ( )

. . ( ) 0; ( , ,..., )

i

n

i

T

m

f x s t h x i m

f x h x R

Equivalently

f x

s t h x h h h h

min ( )

. .

f x

s t Ax b A is an m x n matrix

Copyright ©1991-2009 by K. Pattipati18

– Without loss of generality, assume that the first m columns are independent

Constrained problem Unconstrained problem

– Necessary condition for optimality

1

1

| ; ; &

Theconstraintsimply

[ ]

Let uslook at ( ) ( , ) ( ( ), )

m n mT m n m

B N B N

B N B N

B N N N

A m B N x x x x R x R

Bx Nx b x B b Nx

f x f x x f B b Nx x

min ( )

. .

f x

s t Ax b

1min ( ) ( ( ), )

. .

N N N

n m

N

f x f B b Nx x

s t x R

* *

* 1 *

*1 *

( ) ( ) ( )

( ) ( ) ( ) 0

Welet (- ) ( )

N N N B

N B

B

x N x x B x

T T

x x

T

x

f x f x x f x

f x N B f x

B f x

( ) 0Nf x

Linear Equality Constraints - 1

Copyright ©1991-2009 by K. Pattipati19

We have a set of simultaneous equations:

Alternatively, if we write

- At a local minimum GRADIENT OF THE COST FUNCTION = Linear combination of the gradients of CONSTRAINTS & WEIGHTS = Lagrange multipliers

**

**

( ) 0

( ) 0

N

B

T

x

T

x

f x N

f x B

**( ) 0Tf x A

* * *

| | |*

1 2| | |

* * *

1

( ) , then

( ) ( ) 0

( ) [ , ,.., ] [ 1, 2,..., ]

( ) ( ) 0

n nxm

m

ii

i

h x Ax b

f x h x

h x h h h row row rowm

f x h x

Linear Equality Constraints - 2

Copyright ©1991-2009 by K. Pattipati20

• Second approach: Form Lagrangian function

– Finding stationary and involves solving (n+m) equations

• What about second order conditions: Consider a point satisfying

the 1st order necessary conditions. Suppose we go from to

another feasible point. To 2nd order

*

** *

( , ) ( ) ( ),

0 ( ) ( ) 0

0 ( ) 0

when ( ) 0 ( ) 0;

T m

T

L x f x h x R

Lf x h x

x

Lh x

h x Ax b f x A Ax b

Convert an equality

constrained problem

into an unconstrained

problem

*x*

* * *

1

*

( ) ( ) 0

( ) 0

m

ii

i

f x h x

h x

*x*x *x x

Lagrangian Approach

Copyright ©1991-2009 by K. Pattipati21

– For to be feasible need

– For to be a local minimum, need for all feasible

around , i.e., those satisfying

* * * * 2 *

* * * * 2 *

* * * *

1 1

2 * 2 *

1

1( ) ( ) ( ) ( ) ( ) higher order

2

1( ) ( ) ( ) ( ) ( ) higher order

2

( ) ( ) [ ( ) ( )]

1[ ( ) ( )]

2

T T

T T

ii i i i

m mT

ii i i

i i

mT

i i

i

f x f x x f x f x x x f x x

h x h x x h x h x x x h x x

f x h x f x h x x

x f x h x

higher orderx

*x x *( ) 0 1,2,..,ih x i m

* 2 * 2 *

1

1, ( ) [ ( ) ( )]

2

mT

i i

i

so f x x f x h x x

*x *( ) 0f x

x *x*x ( ) 0 1,2,..,ih x i m

2 *

2 * 2 *

1

( )

[ ( ) ( )] 0

xx

mT

i i

i

L x

Need x f x h x x

*x

Second Order Conditions - 1

Copyright ©1991-2009 by K. Pattipati

– Necessary conditions:

• Special case:

– Necessary conditions:

*

for all satisfying ( ) 0, 1,2,..,

since ( ) ( ) 0

i

T

ii

x h x i m

h x h x x

( ) 0T

ii ih x a x b

* * *

1

*

2 2 * * 2 *

1

*

( ) ( ) 0

( ) 0; 1,2,..,

[ ( ) ( )] 0

( ) 0; 1,2,..,

m

ii

i

i

mT T

xx i i

i

T

i

f x h x

h x i m

y L y y f x h x y y

h x y i m

First order

**

*

( ) 0Tf x A

Ax b

First order

Second Order Conditions - 2

Copyright ©1991-2009 by K. Pattipati

1

* 2

1

2 2 *

1

1

1 2

1

( ) 0;.

( ) 0 0

Recall that for any , 0,defines thenullspaceof , ( )

UsingSVDrepresentation

..

. . 0..

. .

. .

T

Tm

ii

i

T

m

T T

xx

n

T

T

mT

m T

m

m

a

af x a A

a

y L y y f x y y Ay

y R Ay A N A

v

vA U V u u u

v

1

mT

i i i

i

T

n

u v

v

Second Order Conditions - 3

Copyright ©1991-2009 by K. Pattipati

– Sufficient conditions:

– If are linearly independent, then the subspace

Special case: Linear constraints

Linear independence R(A) spans m dimensional subspace=Rm

– When are independent, the constraints are said to be regular or qualified

1

2 2 2 *

1

2

0

Linear combination of last ( ) rowsof

0 ( ) 0

Alternately,since( ) 0 ( )

[( ) ( )]

Infact,anyorthonormalbasisof

n m

m ii

i

T T TT T

xx xx

T T T

xx

Ay y v V

n m V

y L y V L V V f x V

I P y where P A AA A

Rank I P L I P n m

N

( ) willdo todefineA V

2 0 ( ) 0; 1,2,..,T T

ixxy L y y h x y i m

*( )ih x

*( ) { | 0} ( )M x y Ay N A

*( )ih x

Second Order Conditions - 4

Copyright ©1991-2009 by K. Pattipati25

• Example 1:

Illustrative Examples - 1

2 2 2

1 2 3 1 2 3

1

* * *2 1 2 3

*3

1 2 3

2

2 2 2 2

1 2 3 1 2 3

2 2

1 2 1 2

1min ( ) . . 3

2

First order conditions:

0

0 1

0 1

3

Secondorder conditions:

1 0 0

0 1 0

0 0 1

0

(

xx

T

xx

x x x s t x x x

x

x x x x

x

x x x

L

y L y y y y y y y

y y y y

2

1 2) 0 , 0

strict localminimum

y y

Copyright ©1991-2009 by K. Pattipati26

2

3

2

Alternately, (1,1,1) 1 1 1

Orthonormalbasis for

11 0 1

2

11 2 1

6

1 1

1 1 2 61 0 00

22 20 1 0 0

1 2 1 60 0 1

1 16 6 6

2 6

1 00

0 1

T

T

T

T

T

xx

a or A

V

v

v

V L V

Illustrative Examples - 2

Copyright ©1991-2009 by K. Pattipati27

2 2

2 1 1

3 3 3

1 2 1Orthogonal Projection: ;

3 3 3

1 1 2

3 3 3

( ) ( ) ( ) ( )

Rank=2 spans2-dimensionalsubspace

xx

I P

I P L I P I P I P

• If x* is a local minimum but not a regular point, no or infinite

number of Lagrange multipliers

Example 2:2 2 2

1 2 1

1 2

* * * * *

( ) ( 1) ( 1) . . 0

min at 0& 1unique

2 0 0( ) ( )

0 0 0

f x x x s t x

x x

f x h x

Never satisfied

f(x*)

Illustrative Examples - 3

Copyright ©1991-2009 by K. Pattipati28

• Example 3:

• For linear constraints, Lagrange multipliers exist even if the

constraints are not regular. We will discuss this later in the context of

convex programming problems

• Example 4: A continuous random variable x. Don’t know the density

p(x)

2 2 2

1 2 1

* * * *

* * *

1 2

min ( ) ( 1) . . 0

0 0( ) ( )

0 0

Solution 0, 1, anything

f x x x s t x

f x h x

x x

2 2 2 2

( ) ( ) (1)

( ) ( ) (2)

Given E x m xp x dx

E x m x p x dx

.Illustrative Examples - 4

Copyright ©1991-2009 by K. Pattipati29

( ) 0 ( ) 0

2

( ) 1(3)

( ) 0

One wayof finding ( )is tomaximizeentropy {log ( )}

max {log ( )} max ( ) log ( )

(1),(2),(3)satisfies

( , , , )= { ( ) ln ( ) ( ) (

e

e ep x p x

p x dxNeed

p x

p x H E p x

E p x p x p x dx

such that

L p p x p x xp x x p

2 2

2

2

) ( )}

( )

0 ln ( ) 1 0( )

( ) exp( 1 )

x p x dx

m m

Lp x x x

p x

p x c x x

Illustrative Examples - 5

Copyright ©1991-2009 by K. Pattipati30

2

2

' 2 ' 2

( )

2

2

( 1)

( 1)

2

exp( ( ) ); exp( ( ) 1)2 2

1( )

2

2

1

2

For only1st moment

( ) exp( 1 )

( ) 1 11

( )

x m

c x c c

Normal density p x e

m

p x c x

cep x dx

mce

xp x dx m m

Illustrative Examples - 6

Copyright ©1991-2009 by K. Pattipati31

• Example 5:

( 1)

1

2

2

1( ) exponential density

10

( ) ( )

xx m

ce

p x e em

L

p x p x

max

. .( )2

Solution:6

a cube volume = 6 6

xyz

cs t xy yz zx

cx y z

c c

Illustrative Examples - 7

Copyright ©1991-2009 by K. Pattipati32

Sensitivity interpretation

Interpretation of Lagrange Multipliers - 1

1

1 2 1 1 2 1

1 1 1 1

* *

1 2 1

1 11 1

1 1 1 2 2

1 2

1 1 1 2 1

* 1 1 1 21 1

1 1 2

min ( , ) . . ( , )

( , ) ( ) ( ( ) )

Suppose , , isoptimal

0 0 & 0

( ) (1)

( ) 0 [

b

f x x s t h x x b

L x f x h x b

x x

h hL f f

x x x x x

x xf f fx f x

b x b x b

h x h xh x b

x b x b

1

1

21

1

11 1

0

1] 0 (2)

(1) *(2) gives

( ) ii

i i i

xhf f

b x x b

1

1

f

b

Rate of change of f wrt level of constraint changes (or)

Impact on the cost function if additional resources are added

Copyright ©1991-2009 by K. Pattipati33

2

**

2 * * 2 * *

1

*

Consider min ( )

. . ( )

Necessarycondition:

( ) ( ) 0

( )

Jacobian at ,

( ) ( ) | ( )

|

( ) | 0

xxL

m

i i

i

T

f x

s t h x b

f x h x

h x b

x

f x h x h x

J

h x

*, ( ( )) ( )bIn general f x b b

Interpretation of Lagrange Multipliers - 2

Copyright ©1991-2009 by K. Pattipati34

2 *

*

st

*2 *

*

isnon-singular (why?)

If not 0

( ) 0

( ) 0

Premultiply1 equation by

0 , isnot a strict localminimum

Contradiction

0 0since ( )has rank

For nearby ,wehave

xx

T

T

T

xx

J

y yJ

z z

L y h x z

h x y

y

y L y x

y z h x m

b

f

*

( ( )) ( ( )) ( ) 0

( ( ))

x b h x b b

h x b b

Interpretation of Lagrange Multipliers - 3

Copyright ©1991-2009 by K. Pattipati35

Takinggradient of Lagrangian wrt

( ) ( ( )) ( ) ( ( )) ( ) 0

( ( )) ( ) 0

I

b b

b

b

x b f x b x b h x b b

f x b b

( ) ( ( ))bb f x b

Interpretation of Lagrange Multipliers - 4

Copyright ©1991-2009 by K. Pattipati36

Summary

Necessary and Sufficient Conditions

Methods of Specifying constraint set ()

Basic Result: Necessary Conditions of Optimality

Examples

Equality Constraints

Economical Interpretation of Lagrange Multipliers