Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV...

29
Lecture 7: Power

Transcript of Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV...

Page 1: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

Lecture 7: Power

Page 2: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 2

Outlineq Power and Energyq Dynamic Powerq Static Power

Page 3: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 3

Power and Energyq Power is drawn from a voltage source attached to

the VDD pin(s) of a chip.

q Instantaneous Power:

q Energy:

q Average Power:

( ) ( ) ( )P t I t V t=

0

( )T

E P t dt= ò

avg0

1 ( )TEP P t dt

T T= = ò

Page 4: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 4

Power in Circuit Elements

( ) ( )VDD DD DDP t I t V=

( ) ( ) ( )2

2RR R

V tP t I t R

R= =

( ) ( ) ( )

( )

0 0

212

0

C

C

V

C

dVE I t V t dt C V t dtdt

C V t dV CV

¥ ¥

= =

= =

ò ò

ò

Page 5: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 5

Charging a Capacitorq When the gate output rises

– Energy stored in capacitor is

– But energy drawn from the supply is

– Half the energy from VDD is dissipated in the pMOS transistor as heat, other half stored in capacitor

q When the gate output falls– Energy in capacitor is dumped to GND– Dissipated as heat in the nMOS transistor

212C L DDE C V=

( )0 0

2

0

DD

VDD DD L DD

V

L DD L DD

dVE I t V dt C V dtdt

C V dV C V

¥ ¥

= =

= =

ò ò

ò

Page 6: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 6

Switching Waveformsq Example: VDD = 1.0 V, CL = 150 fF, f = 1 GHz

Page 7: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 7

Switching Power

[ ]

switching0

0

sw

2sw

1 ( )

( )

T

DD DD

TDD

DD

DDDD

DD

P i t V dtT

V i t dtTV Tf CVTCV f

=

=

=

=

ò

ò

C

fswiDD(t)VDD

Page 8: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 8

Activity Factorq Suppose the system clock frequency = fq Let fsw = αf, where α = activity factor

– If the signal is a clock, α = 1– If the signal switches once per cycle, α = ½

q Dynamic power:2

switching DDP CV fa=

Page 9: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 9

Short Circuit Currentq When transistors switch, both nMOS and pMOS

networks may be momentarily ON at onceq Leads to a blip of �short circuit� current.q < 10% of dynamic power if rise/fall times are

comparable for input and outputq We will generally ignore this component

Page 10: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 10

Power Dissipation Sourcesq Ptotal = Pdynamic + Pstatic

q Dynamic power: Pdynamic = Pswitching + Pshortcircuit

– Switching load capacitances– Short-circuit current

q Static power: Pstatic = (Isub + Igate + Ijunct + Icontention)VDD

– Subthreshold leakage– Gate leakage– Junction leakage– Contention current

Page 11: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 11

Dynamic Power Exampleq 1 billion transistor chip

– 50M logic transistors• Average width: 12 λ• Activity factor = 0.1

– 950M memory transistors• Average width: 4 λ• Activity factor = 0.02

– 1.0 V 65 nm process– C = 1 fF/μm (gate) + 0.8 fF/μm (diffusion)

q Estimate dynamic power consumption @ 1 GHz. Neglect wire capacitance and short-circuit current.

Page 12: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 12

Solution( )( )( )( )( )( )( )( )

( ) ( )

6logic

6mem

2dynamic logic mem

50 10 12 0.025 / 1.8 / 27 nF

950 10 4 0.025 / 1.8 / 171 nF

0.1 0.02 1.0 1.0 GHz 6.1 W

C m fF m

C m fF m

P C C

l µ l µ

l µ l µ

= ´ =

= ´ =

é ù= + =ë û

Page 13: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 13

Dynamic Power Reduction

q

q Try to minimize:– Activity factor– Capacitance– Supply voltage– Frequency

2switching DDP CV fa=

Page 14: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 14

Activity Factor Estimationq Let Pi = Prob(node i = 1)

– Pi = 1-Pi

q αi = Pi * Pi

q Completely random data has P = 0.5 and α = 0.25q Data is often not completely random

– e.g. upper bits of 64-bit words representing bank account balances are usually 0

q Data propagating through ANDs and ORs has lower activity factor– Depends on design, but typically α ≈ 0.1

Page 15: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 15

Switching Probability

Page 16: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 16

Exampleq A 4-input AND is built out of two levels of gatesq Estimate the activity factor at each node if the inputs

have P = 0.5

Page 17: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 17

Clock Gatingq The best way to reduce the activity is to turn off the

clock to registers in unused blocks– Saves clock activity (α = 1)– Eliminates all switching activity in the block– Requires determining if block will be used

Page 18: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 18

Capacitanceq Gate capacitance

– Fewer stages of logic– Small gate sizes

q Wire capacitance– Good floorplanning to keep communicating

blocks close to each other– Drive long wires with inverters or buffers rather

than complex gates

Page 19: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 19

Voltage / Frequencyq Run each block at the lowest possible voltage and

frequency that meets performance requirementsq Voltage Domains

– Provide separate supplies to different blocks– Level converters required when crossing

from low to high VDD domains

q Dynamic Voltage Scaling– Adjust VDD and f according to

workload

Page 20: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 20

Static Powerq Static power is consumed even when chip is

quiescent.– Leakage draws power from nominally OFF

devices– Ratioed circuits burn power in fight between ON

transistors

Page 21: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 21

Static Power Exampleq Revisit power estimation for 1 billion transistor chipq Estimate static power consumption

– Subthreshold leakage• Normal Vt: 100 nA/μm• High Vt: 10 nA/μm• High Vt used in all memories and in 95% of

logic gates– Gate leakage 5 nA/μm– Junction leakage negligible

Page 22: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 22

Solution

( )( )( )( )

( )( )( ) ( )( ) ( )

( )

t

t

t t

t t

6 6normal-V

6 6 6high-V

normal-V high-V

normal-V high-V

50 10 12 0.025 m / 0.05 0.75 10 m

50 10 12 0.95 950 10 4 0.025 m / 109.25 10 m

100 nA/ m+ 10 nA/ m / 2 584 mA

5 nA/ m / 2

sub

gate

W

W

I W W

I W W

l µ l µ

l l µ l µ

µ µ

µ

= ´ = ´

é ù= ´ + ´ = ´ë ûé ù= ´ ´ =ë ûé ù= + ´ =ë û( )( )

275 mA

P 584 mA 275 mA 1.0 V 859 mWstatic = + =

Page 23: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 23

Subthreshold Leakageq For Vds > 50 mV

q Ioff = leakage at Vgs = 0, Vds = VDD

( )

10gs ds DD sbV V V k V

Ssub offI I

gh+ - -

»

Typical values in 65 nmIoff = 100 nA/μm @ Vt = 0.3 VIoff = 10 nA/μm @ Vt = 0.4 VIoff = 1 nA/μm @ Vt = 0.5 Vη = 0.1kγ = 0.1S = 100 mV/decade

Page 24: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 24

Stack Effectq Series OFF transistors have less leakage

– Vx > 0, so N2 has negative Vgs

– Leakage through 2-stack reduces ~10x– Leakage through 3-stack reduces further

Isub = Ioff 10η Vx−VDD( )

S

N 2! "## $##

= Ioff 10−Vx+η VDD−Vx( )−VDD( )−kγVx

S

N1! "#### $####

1 2DD

xV

Vkg

hh

=+ +

11 2

10 10DD

DD

kV

k VS S

sub off offI I I

g

g

hh

h h

æ ö+ +- ç ÷ç ÷+ + -è ø

= »

Page 25: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 25

Leakage Controlq Leakage and delay trade off

– Aim for low leakage in sleep and low delay in active mode

q To reduce leakage:– Increase Vt: multiple Vt

• Use low Vt only in critical circuits– Increase Vs: stack effect

• Input vector control in sleep– Decrease Vb

• Reverse body bias in sleep• Or forward body bias in active mode

Page 26: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 26

Gate Leakageq Extremely strong function of tox and Vgs

– Negligible for older processes– Approaches subthreshold leakage at 65 nm and

below in some processesq An order of magnitude less for pMOS than nMOSq Control leakage in the process using tox > 10.5 Å

– High-k gate dielectrics help– Some processes provide multiple tox

• e.g. thicker oxide for 3.3 V I/O transistorsq Control leakage in circuits by limiting VDD

Page 27: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 27

NAND3 Leakage Exampleq 100 nm process

Ign = 6.3 nA Igp = 0Ioffn = 5.63 nA Ioffp = 9.3 nA

Data from [Lee03]

Page 28: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 28

Junction Leakageq From reverse-biased p-n junctions

– Between diffusion and substrate or wellq Ordinary diode leakage is negligibleq Band-to-band tunneling (BTBT) can be significant

– Especially in high-Vt transistors where other leakage is small

– Worst at Vdb = VDD

q Gate-induced drain leakage (GIDL) exacerbates– Worst for Vgd = -VDD (or more negative)

Page 29: Lecture 7: Powerpages.hmc.edu/harris/class/e158/lect7-power.pdf2 00 2 0 DD VDD DD L DD V LDD LDD dV E I t V dt C V dt dt C V dV C V ¥¥ == == òò ò 7: Power CMOS VLSI DesignCMOS

CMOS VLSI DesignCMOS VLSI Design 4th Ed.7: Power 29

Power Gatingq Turn OFF power to blocks when they are idle to

save leakage– Use virtual VDD (VDDV)– Gate outputs to prevent

invalid logic levels to next block

q Voltage drop across sleep transistor degrades performance during normal operation– Size the transistor wide enough to minimize

impactq Switching wide sleep transistor costs dynamic power

– Only justified when circuit sleeps long enough