Lecture 5 oms

101
Lecture V. . Organic Conductors Charge-transfer Complexes and Radical-ion Salts Other Low-dimensional materials Polymers

Transcript of Lecture 5 oms

Page 1: Lecture 5 oms

Lecture V.

. Organic Conductors Charge-transfer Complexes and Radical-ion Salts Other Low-dimensional materials Polymers

Page 2: Lecture 5 oms

•Conductive organic molecules

•“Plastic can indeed, under certain circumstances, be made to behave

very like a metal - a discovery for which Alan J. Heeger, Alan G.

MacDiarmid and Hideki Shirakawa are to receive the Nobel Prize in

Chemistry 2000”.

Page 3: Lecture 5 oms

•Molecular building blocks Single bond:

sp3

hybridization

Double bond:

sp2 hybridization

•p-AO o f neighborng i caronb

atoms form π-bonding

•Rigid bond, length of 134 pm

Carbon atom can form

four σ-bonds.

Free rotation is possible

with activaton i energy of 0.1

eV.

Bond length 154 pm

Page 4: Lecture 5 oms
Page 5: Lecture 5 oms

•Molecular building blocks

Cyclic polyenes with conjugation

•that spreads the entire ring are

•called aromatic or arenes

Stability and delocalization of π- •electrons maintained in fused

•rings (polycyclic aromatic molecules)

Page 6: Lecture 5 oms

•Molecular building blocks

Molecules with more than one

double bond called polyenes.

Shape and properties of the

molecule depend on the position of

the double bond

Conjugated double bonds play a

particular role as π-electrones are

delocalized over the extent of the

conjugation

Isolated double bonds

Conjugated double bonds

Cumulated double bonds

Page 7: Lecture 5 oms

•Molecular building blocks Molecules with smaller or larger rings or other atoms in the

•ring (heterocycles) possess the same delocalization

•properties if the number of π-electrons is six.

•Cyclopentadiene anion

•Cycloheptatriene cation

•Heterocycles

Page 8: Lecture 5 oms

•Molecular building blocks

Molecules with a triple bond

are called alkynes

Here, the π-electrons form a

cylindrical cloud around σ-

bond

Very rigid, linear bond with

the length of 120 nm

Conjugated triple bonds

show the same

delocalization as double

bonds

Acetlene y

Page 9: Lecture 5 oms

•Molecular wires Molecular wires are, generally, rod-like structures with delocalized p-system,

•the longer the structure the lesser the difference between the frontier orbitals

•and the Fermi level of the electrode

polyene – alternating system of single

and double bonds;

polythiophene

polyphenylenevinylene

polyphenyleneethynylene

thyophenylsubstituted benzene

Page 10: Lecture 5 oms
Page 11: Lecture 5 oms

Conductivity Of Organic Materials

Page 12: Lecture 5 oms
Page 13: Lecture 5 oms

There are Thermally-stable Good Insulators

Page 14: Lecture 5 oms
Page 15: Lecture 5 oms
Page 16: Lecture 5 oms

We will concentrate on the good conductors

Page 17: Lecture 5 oms

Charge Transfer Complexes

Page 18: Lecture 5 oms
Page 19: Lecture 5 oms
Page 20: Lecture 5 oms
Page 21: Lecture 5 oms
Page 22: Lecture 5 oms
Page 23: Lecture 5 oms
Page 24: Lecture 5 oms
Page 25: Lecture 5 oms
Page 26: Lecture 5 oms

Radical-Ion Salts

Page 27: Lecture 5 oms
Page 28: Lecture 5 oms
Page 29: Lecture 5 oms

Discovery of Conducting Organic Crystals

Page 30: Lecture 5 oms
Page 31: Lecture 5 oms

TTF-TCNQ

Uniform segregated stacks (1D system) Metallic conductivity Metal-insulator transition at TMI = 54 K

Page 32: Lecture 5 oms

TTF-TCNQ ANALOGS

S

S

S

S

Se

Se

Se

Se

Se

Se

Se

Se

TSFHMTTF HMTSF

HMTTF-TCNQ TMI = 48, 43 K 2.38a x 2.78b x c r = 0.72

HMTSF-TCNQ T = 24 K Toward semi-metal a x 2.7b x c with r = 0.74

TSF-TCNQ : TMI = 29 K 2a x 3.15 b x c r = 0.63

TCNQ is not necessary ! Cation radical salts with spectator anions (Brˉ, BF4ˉ, ClO4ˉ, PF6ˉ, …) obtained by chemical (Br2, I2, …) or electrochemical oxidation (electrocristallization)

Page 33: Lecture 5 oms
Page 34: Lecture 5 oms
Page 35: Lecture 5 oms
Page 36: Lecture 5 oms
Page 37: Lecture 5 oms
Page 38: Lecture 5 oms
Page 39: Lecture 5 oms
Page 40: Lecture 5 oms
Page 41: Lecture 5 oms
Page 42: Lecture 5 oms
Page 43: Lecture 5 oms
Page 44: Lecture 5 oms
Page 45: Lecture 5 oms
Page 46: Lecture 5 oms
Page 47: Lecture 5 oms
Page 48: Lecture 5 oms
Page 49: Lecture 5 oms
Page 50: Lecture 5 oms
Page 51: Lecture 5 oms
Page 52: Lecture 5 oms
Page 53: Lecture 5 oms
Page 54: Lecture 5 oms
Page 55: Lecture 5 oms
Page 56: Lecture 5 oms
Page 57: Lecture 5 oms
Page 58: Lecture 5 oms
Page 59: Lecture 5 oms
Page 60: Lecture 5 oms
Page 61: Lecture 5 oms
Page 62: Lecture 5 oms
Page 63: Lecture 5 oms

Other Low Dimensional Materials

Page 64: Lecture 5 oms

Conductivity is controlled by the phthalocyanine ring. The metal core does not interfere the conductivity.

Phthalocyanine channel

I-

Page 65: Lecture 5 oms
Page 66: Lecture 5 oms

Chain length: Si:12030 Ge: 7440 Sn:10040

Page 67: Lecture 5 oms
Page 68: Lecture 5 oms
Page 69: Lecture 5 oms

Polymers

Page 70: Lecture 5 oms
Page 71: Lecture 5 oms

Insulating Polymeric Donor Molecules

Page 72: Lecture 5 oms
Page 73: Lecture 5 oms
Page 74: Lecture 5 oms

Some Chemical Types of Polymers

Page 75: Lecture 5 oms
Page 76: Lecture 5 oms
Page 77: Lecture 5 oms

Conjugated Polymers

Page 78: Lecture 5 oms

Polyacetylene

Page 79: Lecture 5 oms
Page 80: Lecture 5 oms

Electrical conductivity of polyacetylene

Cis-PA s = 1.7 x 10-9 S/cm Trans-PA s = 4.4 x 10-5 S/cm I2 doped s = 5.5 x 102 S/cm AsF5 doped s = 1.2 x 103 S/cm Electrochemical Oxidation s = 1 x 103 S/cm Li doped s = 2 x 102 S/cm Na doped s = 101-10-2 S/cm

Page 81: Lecture 5 oms
Page 82: Lecture 5 oms
Page 83: Lecture 5 oms
Page 84: Lecture 5 oms
Page 85: Lecture 5 oms
Page 86: Lecture 5 oms
Page 87: Lecture 5 oms
Page 88: Lecture 5 oms

Polyparaphenylene (PPP)

Page 89: Lecture 5 oms
Page 90: Lecture 5 oms

Polyaniline (PANI)

Conductor

Insulator

Page 91: Lecture 5 oms
Page 92: Lecture 5 oms
Page 93: Lecture 5 oms
Page 94: Lecture 5 oms

Conductivity Of Organic Materials

Page 95: Lecture 5 oms
Page 96: Lecture 5 oms
Page 97: Lecture 5 oms
Page 98: Lecture 5 oms
Page 99: Lecture 5 oms
Page 100: Lecture 5 oms
Page 101: Lecture 5 oms