Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S....

51
The equations of motion Effects of spherical geometry and rotation Balanced flow Lecture 5: Geophysical Fluid Dynamics Review Jonathon S. Wright [email protected] 21 March 2017

Transcript of Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S....

Page 1: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Lecture 5:Geophysical Fluid Dynamics Review

Jonathon S. Wright

[email protected]

21 March 2017

Page 2: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

The equations of motionNewtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Effects of spherical geometry and rotationSpherical geometryThe centrifugal and Coriolis forcesScale analysis

Balanced flowHydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

Page 3: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Physical law Equation

Conservation of momentum Momentum equations(Navier–Stokes equations)

Conservation of mass Continuity equation

Fluid properties Equation of state

Conservation of salt / water / etc Constituent equations

Conservation of energy Thermodynamic equation

Page 4: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Classical mechanics: two planets

dr1dt

= v1dr2dt

= v2

dv1

dt=−Gm2

(r2 − r1)2r

dv2

dt=

Gm1

(r2 − r1)2r

Page 5: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

ϕ(t)

ϕ(x, y, z, t)

Lagrangian perspective

Eulerian perspective

Fluid motion

Page 6: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Force per unit mass equals acceleration

Classical mechanics

Newton’s second law: force equals mass times acceleration

F = ma

F

m= a =

dv

dt

Page 7: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Time rate of change

Advection of momentum

The total derivative

Newton’s second law is valid in the Lagrangian framework. In an Eulerian framework:

d

dtv(x, y, z, t) =

∂v

∂t+∂v

∂x

dx

dt+∂v

∂y

dy

dt+∂v

∂z

dz

dt

=∂v

∂t+ u

∂v

∂x+ v

∂v

∂y+ w

∂v

∂z

=∂v

∂t+ v · ∇v

Page 8: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

u∂ϕ

∂x+ v

∂ϕ

∂y+ w

∂ϕ

∂z= (v · ∇)ϕ

u∂ϕ

∂x

v∂ϕ

∂y

w∂ϕ

∂z

δx

δy

δz

The advection operator

A mathematical expression of the ability of a fluid parcel to carry its properties along

Page 9: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Forces (per unit mass) acting on the fluid

Conservation of momentum...

The momentum equations

∂v

∂t+ (v · ∇)v =

F

m

Page 10: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

−1

ρ

∂p

∂z

g

p p+ δp

δx

δy

δz

The momentum equations

Page 11: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

The momentum equations

∂u

∂t+ (v · ∇)u = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z− g + Fz

Page 12: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

u+ δuρ+ δρ

δx

δy

δz

Conservation of mass...

convergence or divergence of mass in one dimension

The continuity equation

δyδz

[(ρu)(x, y, z)−

((ρu)(x, y, z) +

∂(ρu)

∂xδx

)]= −∂(ρu)

∂xδxδyδz

Page 13: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

convergence or divergence of mass in three dimensions

time rate of change

The continuity equation

∂ρ

∂tδxδyδz = −

[∂(ρu)

∂x+∂(ρv)

∂y+∂(ρw)

∂z

]δxδyδz

∂ρ

∂t= −

[∂(ρu)

∂x+∂(ρv)

∂y+∂(ρw)

∂z

]

∂ρ

∂t+∇ · (ρv) = 0

Page 14: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Conservation of momentum and mass...

Four equations

∂u

∂t+ (v · ∇)u = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z− g + Fz

∂ρ

∂t+∇ · (ρv) = 0

Page 15: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

p = ρRdT

p = ρRdTvvirtual temperature:

Tv = (1 + 0.608q)T

The equation of state

For a dry atmosphere:

For an atmosphere with water vapor (but no clouds):

Page 16: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

ρ = F (T, S, p)

ρ ≈ ρ0

no general formThe equation of state

For the ocean:

For a small volume of ocean (density approximately constant):

Page 17: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

ρ = F (p)

ρ = F (p, · · · )

The equation of state

For a barotropic fluid (density is a function of pressure alone):

For a baroclinic fluid (isopycnals and isobars cross):

Page 18: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

Five equations

∂u

∂t+ (v · ∇)u = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z− g + Fz

∂ρ

∂t+∇ · (ρv) = 0

ρ = F (p, T, · · · )

Page 19: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

temperature advection (includes adiabatic effects)

time rate of changediabatic heating and cooling

Thermodynamic equation

Conservation of energy

∂θ

∂t+ (v · ∇)θ =

θ

cpTQ

Page 20: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

constituent advection

time rate of change

sources sinks diffusion

Constituent equations

Conservation of water, salt, etc. — we can add as many as we need

∂c

∂t+ (v · ∇)c =

1

ρ(∆csrc −∆csnk + ∆cdiff)

Page 21: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Newtonian mechanics and frame of referenceThe momentum and continuity equationsThermodynamic and concentration equations

subject to

boundary

conditions

Seven equations (valid for an inertial frame of reference)

∂u

∂t+ (v · ∇)u = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z− g + Fz

∂ρ

∂t+∇ · (ρv) = 0

ρ = F (p, T, · · · )∂θ

∂t+ (v · ∇)θ =

θ

cpTQ

∂c

∂t+ (v · ∇)c =

1

ρ(∆csrc −∆csnk + ∆cdiff)

Page 22: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

Ω

north pole

equator

south pole

λ

ϑ

r

x

y z

x = r cosϑλ

y = rϑ

z = r − a

u =dx

dt= r cosϑ

dt

v =dy

dt= r

dt

w =dz

dt=dr

dt

Spherical geometry

(x, y, z)→ (λ, ϑ, r)

Page 23: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

Spherical curvature effects in the momentum equations

∂u

∂t+ (v · ∇)u −

(u tanϑ

a

)v +

w

au = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w −u

2 + v2

a= −1

ρ

∂p

∂z− g + Fz

Page 24: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

Spherical curvature effects in the continuity equation

∂ρ

∂t+

[∂(ρu)

∂x+

1

cosϑ

∂(ρv cosϑ)

∂y+∂(ρw)

∂z

]= 0

∂ρ

∂t+∇λ,ϑ,r · (ρv) = 0

Page 25: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

... all other equations unchanged except for coordinate and variable substitutions

Spherical curvature effects in the continuity equation

∂ρ

∂t+

[∂(ρu)

∂x+

1

cosϑ

∂(ρv cosϑ)

∂y+∂(ρw)

∂z

]= 0

∂ρ

∂t+∇λ,ϑ,r · (ρv) = 0

Page 26: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

−geff

−ggrv

Fcen = Ω2r⊥

Φ = 0

Ω

ϑ

Effects of rotationThe centrifugal force

Φ = gz +Ω2r2

⊥2

geff = −∇Φ

Page 27: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

Objects leave polestoward Africa

Objects move in straightlines, but Earth rotates

From Earth’s perspective,objects are deflected

Effects of rotationThe Coriolis force Fcor = −2Ω× vR

Page 28: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

Effects of rotationThe Coriolis force Fcor = −2Ω× vR

Ω = (0,Ω cosϑ,Ω, sinϑ) vR = (u, v, w)

Fcor|x = v2Ω sinϑ− w2Ω cosϑ

Fcor|y = −u2Ω sinϑ

Fcor|z = u2Ω cosϑ

Page 29: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

advection PGFcurvature terms

Coriolis terms centrifugal force

friction

Rotational and curvature effects in the momentum equations

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x− ∂Φ

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y− ∂Φ

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− ∂Φ

∂z+ Fz

Page 30: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

f = 2Ω sinϑ

Rotational and curvature effects in the momentum equations

∂u

∂t+ (v · ∇)u−

(f +

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x− ∂Φ

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(f +

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y− ∂Φ

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− ∂Φ

∂z+ Fz

Page 31: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

f = 2Ω sinϑ

... all other equations unaffected by rotation

Rotational and curvature effects in the momentum equations

∂u

∂t+ (v · ∇)u−

(f +

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x− ∂Φ

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(f +

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y− ∂Φ

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− ∂Φ

∂z+ Fz

Page 32: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

u, v ∼ U

x, y ∼ L

1

ρ∇pxy ∼ PGFxy

f ∼ f0

w ∼ W

z ∼ H

1

ρ∇pz ∼ PGFz

time ∼ T =L

U

Scale analysis

Use typical scales of motion for large-scale dynamics to simplify the equations

Page 33: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Spherical geometryThe centrifugal and Coriolis forcesScale analysis

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

10−7 10−7 10−5 10−3 10 10 ?

Scale analysis: mid-latitude atmospheric weather systems

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− g + Fz

Page 34: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

10−7 10−7 10−5 10−3 10 10 ?

Hydrostatic balance

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− g + Fz

Page 35: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

Hydrostatic balance

∂p

∂z= −ρg

valid for

(H

L

)2

1

Page 36: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

Applying hydrostatic balance: constant pressure coordinates

∂Φ

∂p=∂Φ

∂z

∂z

∂p= − 1

ρg

∂Φ

∂z= −1

ρ= −RdT

p

∇pp = 0⇒ ∇zp +∂p

∂z∇pz = ∇zp− ρg∇pz = 0

1

ρ∇zp = g∇pz = ∇pΦ

Page 37: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

this perspective simplifies the equations, but complicates the lower boundary conditions

Applying hydrostatic balance: constant pressure coordinates

∂u

∂t+ (u · ∇p)u+ ω

∂u

∂p− fv = −∂Φ

∂x+ Fx

∂v

∂t+ (u · ∇p)v + ω

∂v

∂p+ fu = −∂Φ

∂y+ Fy

∂Φ

∂p= −RdT

p= −1

ρ

∇p · u +∂ω

∂p= 0

Q = cpdT

dt− 1

ρ

dp

dt= cp

(∂T

∂t+ (u · ∇p)T + ω

∂T

∂p

)− 1

ρω

Page 38: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

10−7 10−7 10−5 10−3 10 10 ?

The primitive equations

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− g + Fz

Page 39: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

10−7 10−7 10−5 10−3 10 10 ?

The f -plane

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w − u2 + v2

a− u · 2Ω cosϑ = −1

ρ

∂p

∂z− g + Fz

Page 40: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

∂u

∂t+ (v · ∇)u− f0v = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v + f0u = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z+ Fz

focus on a smallpart of the sphere

. f = f0 is assumedconstant

. curvature can beneglected

The f -plane

Page 41: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

∂u

∂t+ (v · ∇)u− fv = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v + fu = −1

ρ

∂p

∂y+ Fy

∂w

∂t+ (v · ∇)w = −1

ρ

∂p

∂z+ Fz

focus on a smallpart of the sphere

. f ≈ f0 + βy

. curvature can beneglected

Retains the simpler geometry ofthe plane while allowing f to vary

by linearizing f : f = f0 + βy

The β-plane

Page 42: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

keep only the largest terms in the horizontal momentum equations:

fug = −1

ρ

∂p

∂y−fvg = −f

ρ

∂p

∂x

Geostrophic balance

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

Page 43: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

fug = −1

ρ

∂p

∂y−fvg = −f

ρ

∂p

∂x

Valid for U/L f0

Rossby number: Ro ≡ U

f0L

Geostrophic balance

Page 44: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

vg

pressuregradient force

Coriolisforce

Low pressure

High pressure

Geostrophic balance

Page 45: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

2.8 Geostrophic and Thermal Wind Balance 87

Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolisparameter f . Flow is parallel to the lines of constant pressure (isobars). Cy-clonic flow is anticlockwise around a low pressure region and anticyclonic flowis clockwise around a high. If f were negative, as in the Southern hemisphere,(anti-)cyclonic flow would be (anti-)clockwise.

? If the Coriolis force is constant and if the density does not vary in the horizontalthe geostrophic flow is horizontally non-divergent and

rz · ug =@ug@x

+ @vg@y

= 0 . (2.189)

We may define the geostrophic streamfunction, , by

pf00

, (2.190)

whence

ug = @ @y

, vg =@ @x

. (2.191)

The vertical component of vorticity, , is then given by

= k ·r v = @v@x

@u@y

= r2z . (2.192)

? If the Coriolis parameter is not constant, then cross-differentiating (2.187) gives,for constant density geostrophic flow,

vg@f@y

+ frz · ug = 0, (2.193)

which implies, using mass continuity,

vg = f@w@z

. (2.194)

anticyclone

cyclone

from Vallis 2006

Geostrophic balance

Page 46: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

10−4 10−4 10−3 10−5 10−8 10−6 10−3 ?

Friction slows the near-surface wind, sothat geostrophic balance is not exact

Quasi-geostrophic balance

∂u

∂t+ (v · ∇)u−

(2Ω sinϑ+

u tanϑ

a

)v +

w

au+ w · 2Ω cosϑ = −1

ρ

∂p

∂x+ Fx

∂v

∂t+ (v · ∇)v +

(2Ω sinϑ+

u tanϑ

a

)u+

w

av = −1

ρ

∂p

∂y+ Fy

Page 47: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

vgv

friction

pressuregradient force

Coriolisforce

Low pressure

High pressure

Quasi-geostrophic balance

Page 48: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

2.8 Geostrophic and Thermal Wind Balance 87

Fig. 2.5 Schematic of geostrophic flow with a positive value of the Coriolisparameter f . Flow is parallel to the lines of constant pressure (isobars). Cy-clonic flow is anticlockwise around a low pressure region and anticyclonic flowis clockwise around a high. If f were negative, as in the Southern hemisphere,(anti-)cyclonic flow would be (anti-)clockwise.

? If the Coriolis force is constant and if the density does not vary in the horizontalthe geostrophic flow is horizontally non-divergent and

rz · ug =@ug@x

+ @vg@y

= 0 . (2.189)

We may define the geostrophic streamfunction, , by

pf00

, (2.190)

whence

ug = @ @y

, vg =@ @x

. (2.191)

The vertical component of vorticity, , is then given by

= k ·r v = @v@x

@u@y

= r2z . (2.192)

? If the Coriolis parameter is not constant, then cross-differentiating (2.187) gives,for constant density geostrophic flow,

vg@f@y

+ frz · ug = 0, (2.193)

which implies, using mass continuity,

vg = f@w@z

. (2.194)

divergentclear and dry

convergentcloudy and wet

from Vallis 2006

Quasi-geostrophic balance

Page 49: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

Assuming geostrophic

(fug = −∂Φ

∂y

∣∣∣∣p

)and hydrostatic

(∂Φ

∂p= −RdT

p

)balance:

f∂ug

∂p= − ∂

∂p

∂Φ

∂y

∣∣∣∣p

=Rd

p

∂T

∂y

∣∣∣∣p

f∂vg

∂p=Rd

pz×∇pT

The vertical gradient of the geostrophic wind dependson the horizontal gradient of temperature

The thermal wind balance

Page 50: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

−∇p

−∇p

·

×

u > 0

u < 0

Higher pressure Lower pressure

Lower pressure Higher pressure

WarmLight

ColdDense

tropics trade winds subtropics ϑ

The thermal wind balance

Page 51: Lecture 5: Geophysical Fluid Dynamics Review · Geophysical Fluid Dynamics Review Jonathon S. Wright jswright@tsinghua.edu.cn 21 March 2017. The equations of motion E ects of spherical

The equations of motionEffects of spherical geometry and rotation

Balanced flow

Hydrostatic balanceThe primitive equations and the f and β plane approximationsGeostrophic balance and the thermal wind

Assuming geostrophic

(fug = − 1

ρ0

∂p

∂y

)and hydrostatic

(∂p

∂z= −ρg

)balance:

f∂ug

∂z= − 1

ρ0

∂z

∂p

∂y= − 1

ρ0

∂y

∂p

∂z=

g

ρ0

∂ρ

∂y

f∂vg

∂z= − g

ρ0z×∇ρ

The vertical gradient of the geostrophic current dependson the horizontal gradient of density

Thermal “wind” in the ocean