Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture...

62
Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 1 DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING Lecture 4 Tropospheric Chemistry Data Assimilation H. Elbern Rhenish Institute for Environmental Research at the University of Cologne and Virt. Inst. for Inverse Modelling of Atmopheric Chemical Composition

Transcript of Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture...

Page 1: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 1

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Lecture 4Tropospheric Chemistry

Data AssimilationH. Elbern

Rhenish Institute for Environmental Research at the University of Cologne

andVirt. Inst. for Inverse Modelling of Atmopheric Chemical

Composition

Page 2: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 2

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Objective of this lecture

Understand the• the bi- and multi-uncertainty aspect of

tropospheric chemistry data assimilation: the generalized inversion task

• consequences for system implementation

• Observe practical potential and limits of tropospheric chemistry data assimilation and air quality forecasts

Page 3: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Outline1. Objectives and special challenges of air quality

data assimilation

2. Implications for the methodology

3. Tropospheric chemistry 4Dvar examples

4. Summary

Page 4: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 4

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Motivation What is the public request?

As brief as possible:• to provide timely prediction of chemical weather

(summer: photo smog; winter: particulate matter)

• fine scale pollution monitoring for retrospective assessment of reduction measures and exposure times (most importantly particulate matter)

2 realisation attempts on a European level:EC 6FP GEMS, ESA GSE PROMOTE

Page 5: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 5

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Objectives of air quality data assimilation

• bring together air quality measurements and CTMs to provide optimal spatio-temporal reconstructions of air quality parameters,

• estimate variability, sources, sinks, and trends• provide better air quality predictions• reconstruct past changes,• act as a decision support system for protection

measures (which emissions are most critical?)

Page 6: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 6

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Which constituents/complexity really matters? • Human health:

– PM10, PM2.5, PM1 (= Particulate Matter )– POPs (Persistent Organic Pollutants):

• PAHs (Polycyclic Aromatic Hydrocarbons), • PCBs (PolyClorinated Biphenyls), • HCHs (HexaCloroHexanes), • benzene, • benzopyrene, ….

– Trace metals: Cd, Be, Co, Hg, Mo, Ni, Se, Sn, V, As, Cr, Cu, Mn, Zn, Pb

– Ozone, PAN, NO, NO2, SO2, CO– Pollen

• Crops:– Ozone

• Forests, lakes, other vulnerable ecosystems– “Acid rain”– ozone

∫x

drrm0

)(

Page 7: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 7

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Special challenges of Special challenges of tropospherictroposphericchemistry data assimilationchemistry data assimilation

The following problems prevail:1. strong influence of manifold processes including

emissions and deposition2. spatially highly variable “chemical regimes”3. chemical state observability (= “analyseability”)

hampered by manifold hydrocarbon species4. consistency with heterogeneous data sources:

satellite data and in situ observations

This invokes the application space-time data assimilation algorithms preserving the BLUEBLUE property (Best Linear Unbiased Estimator)

Page 8: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 8

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

State of the Art ExamplesHow are today’s services designed?

1. solvers of a deterministic transport-diffusion-reaction equation, mostly operator-split-wise (except probably reaction-vert. diffusion)

2. continental, or regional nest (1 km < ∆x < 250 km horizontal resolution)

3. tropospheric gas phase chemistry, 40-60 species, < 200 reactions

4. basic aerosol treatment of at least NH3, HNO3, H2SO4

Page 9: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 9

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

““UpgradeUpgradedata to data to informationinformation”

GISdata

Simulation of the“atmospheric processor”

healthinformation

legislationculturalheritage

farmingsupport

aviationcontrol

science

Meteodata

Emissioninventories

in situobservations

Satellite retrievals

Chemical Weather SystemChemical Weather System

Page 10: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 10

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Special challenge: which is the appropriate scale for air quality modelling?

• intercontinental / long range transport of pollutants

• many processes are local: point and line source emissions

• surface patterns/tesselation impacts skill

• boundary layer and convection simulation at least of like importance as in meteorology

Page 11: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 11

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Prognosis

www.eurad.uni-koeln.de

Europeds = 125 km

Central Europeds = 25 km

NRWds = 5 km

23 levels lowest level: ca. 40 mupper boundary ca. 15 km

Sequential nestingJülich example

ECHOds = 1 km

10 20 30 40 50 60 70

10

20

30

40

50

60

5.250 12.800 22.400 35.700 53.200 76.600 111.000 190.000 412.000

casename: grid: 79 x 69

KFZ kg/Tag echo

© b

y E

UR

AD

Wed

Nov

6 2

2:48

:26

2002

Page 12: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 12

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Hemispheric forecast PM10

Incentives•In readiness for tropospheric satellite data•boundary value provision for continental scale models for long range transported constituents

high resolution version150 x 150 gridDx = 125 km

Page 13: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 13

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Coarsest grid for intercontinental transportforecast 6.9.2005 today (∆x=250 km)

ozone and PM10

Page 14: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 14

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Daughter grids forecast 6.9.2005 todayEurope ∆x=125 km and central Europe ∆x=25 km

Page 15: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 15

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

targeted regionsforecast 6.9.2005

5 km resolution

Page 16: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 16

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

NOx1.5 x

1 x

0.6 x

VOCs

0.6 x 1 x 1.5 x

0.6 x 1 x 1.5 x

Note:notC-orthogonal,not max.sensitivitiesaligned

BERLIOZ NOx-VOC emissions variation

ensemble (20.7.1998,

15:00 UTC)

Page 17: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 17

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

NOx1.5 x

1 x

0.6 x

VOCs

0.6 x 1 x 1.5 x

0.6 x 1 x 1.5 x

BERLIOZ NOx-VOC emissions variation

ensemble (21.7.1998,

15:00 UTC)

Note:notC-orthogonal,not max.sensitivitiesaligned

Page 18: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 18

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Empirical Kinetic Model Approach scheme

Isopleths of ozone production, due to NO2 and VOC

Nitrogene oxides and numerous hydrocarbons act highly nonlinearly as precursors of ozone. Chemical conditions are either controlled by NOx or VOC deficit, delineating the “chemical regime”.Both 4D-var and Kalman filter should start with the proper chemical regime.

EKMA diagram(Empirical Kinetic Model Approach) VOC sensitive

NOx sensitive

NOx

VOCs

approximate conditions 20.7. and 21.7.

Page 19: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 19

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Aerosol Chemistry in

MADEModal Aerosol Dynamics

for EURAD/Europe(Ackerman et al., 1998,

Schell 2000)

dMik/dt=nuki

k+coagiik+coagij

k

+condik+emiik

Mik:=kth Moment of ith Mode

Bridge from optical to chemicalpropertiesassimilation of aerosolBy sattelite retrievals: e.g.MERIS MODIS AATSR+SCIAMACHY,…

Page 20: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 20

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Example: chemical complexity:The EURAD Secondary ORGanic Aerosol

Model (SORGAM)

Page 21: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 21

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Advanced spatio-temporal data assimilation:4D -var and Kalman filtering

• Models do not passively accept external 3D analyses (probably react by engendering spurious relaxations)

• Rather contribute with its dynamics/ chemical kinetics as constraint to estimate the most probable state or parameter values

Best Linear Unbiased Estimate (BLUE)while using data and models consistentlyallows for Hypothesis testing

Page 22: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 22

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Advanced Advanced spatiospatio--temporal methods used in temporal methods used in tropospherictropospheric chemistry data assimilationchemistry data assimilation

Spacio-temporal BLUEs applied in troposphericchemistry data assimilation:

• 4D var: – with EURAD (Elbern and Schmidt, 1999, 2001), – with POLAIR (Issartel and Baverel, 2003)

• Kalman Filter – with LOTOS model (van Loon et al, 2000), (RRSQR)– with EUROS model (Hanea et al. 2004) (En+RRSQRKF)

Page 23: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 23

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Question: Which parameter to be optimized?Hypothesis: initial state and emission rates are least known

Page 24: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 24

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

In the troposphere, for emission rates, the product(paucity of knowledge*importance) is high

Page 25: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 25

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Incremental Formulation

•Analysis State:

•New „State“ Variables:

•Cost Function:

Page 26: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 26

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Background Error Covariance Matrix B• must be provided as an operator (size is of order 1013)

• we would like to have an operator which caneasily be factorised by B=B1/2BT/2

• Weaver and Courtier (2001):–general diffusion equation serves for a valid operator

generating a positive definite covariance operator–diffusion equation is self adjoint–B1/2 and BT/2 by applying the diffusion operator half the

diffusion time

Page 27: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 27

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Background standard deviations Σ

• function of height and species:

• relative background errors:height level dependent

• absolute background errors:species dependent

Page 28: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 28

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

4D-var configuration

MesoscaleMesoscale EURAD 4DEURAD 4D--var var datadata assimilationassimilation systemsystem

meteorologicaldriverMM5

meteorologicaldriverMM5

EURADemission model

EEMemission 1. guess

EURADemission model

EEMemission 1. guess

direct CTMdirect CTM

emission ratesemission rates

Initi

alva

lues

Initi

alva

lues

min

imis

atio

nm

inim

isat

ion

adjointCTM

adjointCTM

observationsobservationsanalysisanalysis

grad

ient

fore-cast

Page 29: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 29

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

backward integration

1. step 2. step 3. step 4. step 5. step 6. step 7. step 8. step 9. step

2 level forward and backward integration schemetime direction

disk

forward integration

backward integration

intermediate storageLevel 1

store

recover

1. step 2. step 3. step 4. step 5. step 6. step 7. step 8. step 9. step

Page 30: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 30

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

horiz

. Adv

ektx

horiz

. Adv

ekty

vert.

Diff

usio

n

vert.

. Adv

ekt

Adj

ungi

erte

horiz

. Adv

ektx

Adj

ungi

erte

horiz

. Adv

ekty

Adj

ungi

erte

vert.

Adv

ekt

Adj

ungi

erte

vert.

Diff

usio

n

horiz

. Adv

ektx

horiz

. Adv

ekty

vert.

Diff

usio

n

vert.

. Adv

ekt

Adj

ungi

erte

horiz

. Adv

ektx

Adj

ungi

erte

horiz

. Adv

ekty

Adj

ungi

erte

vert.

Adv

ekt

Adj

ungi

erte

vert.

Diff

usio

n

Che

mie

Adj

ungi

erte

Che

mie

storage sequence: level 2, operator split(each time step)

intermediate storageLevel 2

horiz

. Adv

ektx

horiz

. Adv

ekty

Che

mie

vert.

Diff

usio

nve

rt.. A

dvek

t

horiz. Advektx

horiz. Advekty

vert. Diffusion

vert.. Advekt

horiz

. Adv

ektx

horiz

. Adv

ekty

vert.

Diff

usio

n

vert.

. Adv

ekt

Adj

ungi

erte

horiz

. Adv

ektx

Adj

ungi

erte

horiz

. Adv

ekty

Adj

ungi

erte

vert.

Adv

ekt

Adj

ungi

erte

vert.

Diff

usio

n

horiz

. Adv

ektx

horiz

. Adv

ekty

vert.

Diff

usio

n

vert.

. Adv

ekt

Adj

ungi

erte

horiz

. Adv

ektx

Adj

ungi

erte

horiz

. Adv

ekty

Adj

ungi

erte

vert.

Adv

ekt

Adj

ungi

erte

vert.

Diff

usio

n

Che

mie

Adj

ungi

erte

Che

mie

horiz

. Adv

ektx

horiz

. Adv

ekty

Che

mie

vert.

Diff

usio

nve

rt.. A

dvek

t

horiz. Advektx

horiz. Advekty

vert. Diffusion

vert.. Advekt

intermediate storageLevel 1

Page 31: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 31

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Treatment of the inverse problem for emission rate inference

Page 32: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 32

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Normalised diurnal cycle of anthropogenic surface emissions f(t)emission(t)=f(t;location,species,day) * v(location,species)

day in {working day, Saturday, Sunday} v optimization parameter

Page 33: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 33

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Optimisation of emission ratesamplitude optimisation for each emittedspecies and grid cell

AS1

Page 34: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Slide 33

AS1 Fraglich, ob diese Folie gezeigt werden muss. Wenn Fragen kommen, dann zeigen.Achim Strunk, 22/04/2004

Page 35: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 34

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Background emission rate covariance matrix D

Page 36: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 35

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Reduction of the partial cost functionsrelative to observation type (coarse grid, 54 km)

GO ground in situSC satellite columns (NO2)SP satellite profiles (O3)TO total costsEM background emissionBG state background

Page 37: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 36

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Semi-rural measurement site Eggegebirge

assimilation interval forecast

7. August 8. August 1997

+ observationsno optimisation

initial value opt.

emis. rate opt.

joint emis + ini val opt.

Page 38: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 37

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Rhine-Main area box: (Frankfurt-Mainz)9.-10. August 1997

assimilation interval forecast+ observationsno optimisation

initial value opt.

emis. rate opt.

joint emis + ini val opt.

Page 39: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 38

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Error statisticsbias (top), root mean square (bottom)

assimilation window forecast

forecast

assimilation window

+ observationsno optimisation

initial value opt.

emis. rate opt.

joint emis + ini val opt.

Page 40: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 39

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

∆x=54 km

WhichWhich isis thethe requestedrequested resolutionresolution??BERLIOZBERLIOZ grid designs and observational sites

(20. 21. 07.1998)

∆x=18 km∆x=6 km

∆x=2 km

Con

trol a

nd d

iagn

ostic

sC

ontro

l and

dia

gnos

tics

Page 41: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 40

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Some BERLIOZ examples of NOx assimilation (20. 21. 07.1998)

NO

NO2

Time series for selected NOx stations on nest 2. + observations, -- - no assimilation,-____ N1 assimilation (18 km), -____N2 assimilation.(6 km), -grey shading: assimilatedobservations, othersforecasted.

Page 42: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 41

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

surf

ace

heig

ht la

yer ~

32-~

70m

NO2, (xylene (bottom), CO (top) SO2 .

Emission source estimates by inverse modellingOptimised emission factors for Nest 3

Page 43: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 42

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Nest 2: (surface ozone)(20. 21. 07.1998)

without assimilation with assimilation

Page 44: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 43

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

CONTRACEConvective Transport of Trace Gases into

the upper Troposphere over

Europe: Budget and Impact of Chemistry

Coord.: H. Huntrieser, DLR

flight path Nov. 14, 2001

Page 45: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 44

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

CONTRACE Nov. 14, 2001 north (= home) bound

O3

H2O2CO

NO

1. guess assimilation result observations flight height [km]

Page 46: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 45

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Assimilation of GOME NO2 tropospheric columns, 5.8.1997

GOME NO2 columns: Courtesy of A. Richter, IFE, U. Bremen

# m

olec

NO

2/cm

2

NOAA NOAA chch 3 (near infrared)3 (near infrared)

# m

olec

NO

2/cm

2#

mol

ecN

O2/c

m2

post assimilationforecaststarted:5.8.97 06:00 UTC

forecast without assimilation

Page 47: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 46

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

NO2 tropospheric column assimilation IFE:Example: BERLIOZ episode 20.7.1998

GO

ME

retie

val

Cou

rtesy

: A. R

icht

er, I

FE B

rem

en

no a

ssim

ilatio

nw

ith a

ssim

ilatio

n

NOAA 1411:51 UTC

Page 48: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 47

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

IUP Bremen GOME GOME forecast validation

ideal

no assimilation with assimilation

20.7.98

verificationforecast 21.7.98(not assimilated)

forecast forecast

Page 49: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 48

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

GOME ozone profile assimilation BERLIOZ (20.7.1998)Data: Neuronal Network retrieval (Müller et al., 2003)

+ NNORSY ozone retrieval

first guess

after assimilation

Page 50: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 49

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Ozone observation increment 20.07.1998layer: 200-100 hParadius of influence: 200 km

height dependent influence radii

Page 51: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 50

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

ComparisonSPURT flight campaign with NNORSY retrievalsflight Germany canary Islands 17. Jan. 2002

Time, location, and height of airplane-GOME match

Page 52: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 51

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Which revisit cycle is usefull for the middle and upper troposphere data assimilation?

average30°-40°N

average40°-50°N

average60°-70°Naverage

50°-60°N

NNORSY retrievalsnever DADA based forecastcurrent data assimi.

Page 53: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 52

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

How long is satellite data assimilation sustained? (GOME retrievals)

no G

OM

E da

ta a

vaila

ble

ratio without any assimilation

normalized squared errors

Page 54: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 53

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

MOPITT tropospheric CO assimilation

850 hPa, 1 July. 2003

first guess at 11:00 UTC;.

retrieved 850 hPaconcentrationsin ppbV.

4D-Var analysis for thesame time;

Note: Colour codes are not fully consistent!

Page 55: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 54

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Assimilation of Aerosol observations• In situ:

EEA Airbase: Database of groundstations of EU member countries & states:

• 450 stations for PM10 (2003)• No PM2.5. (4 stations in UK only)

• Satellite measurements:SYNAER (SYNergetic AErosol Retrieval, DLR-DFD, [Holzer-Popp, 2001])*

• combines GOME&ATSR-2, SCIAMACHY&AATSR measurementsaboard ERS-2/ENVISAT

• ATSR-2/AATSR:dark field detection, BLAOT (Boundary Layer Aerosol OpticalThickness) and albedo are calculated

• GOME/SCIAMACHY: Provides PM0.5, PM2.5 and PM10 columns and its composition (6 intrinsic species)

Page 56: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 55

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

EEA PM10 stations

SYNAER PM10

retrievals

Aerosol observations (14.7.2003, ~10:00 UTC)

Page 57: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 56

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Background Error Covariance Matrix B (short design outline)

( )( )∑=

−−=K

nj

nji

niij xxxx

KB

1

1

K=# Ensembles; i,j neighboring cells

TL κ2=diffusion coefficients κ:

Correlation length L to neighboring gridcell:

, , ,

1. How to obtain the covariances?Ensemble/NMC approach:

2. How to process this information?Translate into Diffusion coefficients difusion paradigma

Page 58: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 57

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

3Dvar aerosol assimilation (13.7.2003)

in s

ituon

lyin

situ

& SY

NAE

R

in s

itu&

SYN

AER

back

grou

nd

Page 59: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 58

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

3Dvar aerosol assimilation (14.7.2003)biomass burning case in Spain

in s

ituon

ly

in s

itu&

SYN

AER

back

grou

nd

in s

itu&

SYN

AER

Page 60: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 59

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Do aerosol data assimilation effectsaccumulate? (14. July 2003)

assimilation on previous days 10 UTCAccumulation of retrieval information over 14 days

No previous assimilationonly 14. July 2003

Page 61: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 60

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Validation

wildfires5.3(28%)5.5 (24%)7.34914.07.2003none1.9 (70%)2.5 (61%)6.32013.07.2003none1.3 (32%)1.4 (30%)1.92912.07.2003

no sat data----11.07.2003wildfires6.9(26%)6.5 (30%)9.32710.07.2003

no sat data----09.07.2003wildfires6.7 ( -2%)7.1 ( -8%)6.61308.07.2003wildfires6.9 (28 %)6.8 (29 %)9.63207.07.2003

no sat data----06.07.2003In situ & satIn situ onlyno assim.

RemarksRMS [µg/m3] (improvement)# withheldstations

Date

Surface stations in grid cells with SYNAER retrievals withheld for validation

Page 62: Lecture 4 Tropospheric Chemistry Data Assimilationearth.esa.int/dragon/D5_L4_Elbern.pdfDay 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 3 DRAGON ADVANCED TRAINING

Day 5 Lecture 4 Tropospheric Chemistry Data Assimilation Hendrik Elbern 61

DRAGON ADVANCED TRAINING COURSE IN ATMOSPHERE REMOTE SENSING

Summary

• chemical weather forecasts are a multiple scale problem

• chemical data assimilation rests on sparse and heterogeneous observations, with variable error characteristics (incl. error of representativity)

• initial value optimisation is insufficient, as at least emissions are less known and more important

• the ability for inversion is therefore required to optimize emission rates

• much is to be done for optimising multivariate covariance matrices