Lecture 4 - Final for Posting

download Lecture 4 - Final for Posting

of 53

Transcript of Lecture 4 - Final for Posting

  • Reservoir Geomechanics

    In situ stress and rock mechanics applied to reservoir processes

    Week 2 Lecture 4 Constitutive Laws Chapter 3

    Mark D. Zoback Professor of Geophysics

    Stanford|ONLINE gp202.class.stanford.edu

  • 2

    2

  • Section 1 Basic Definitions Poroelasticity and Effective Stress

    Section 2 Viscoplasticity (Creep) in Weak

    Sands

    Section 3 Viscoplasticity (Creep) in Shales

    Outline

    Stanford|ONLINE gp202.class.stanford.edu

    3

  • Laboratory Testing

    Stre

    ss (M

    Pa)

    Figure 3.2 pg.58

    Stanford|ONLINE gp202.class.stanford.edu

    4

  • Constitutive Laws

    Figure 3.1 a,b pg.57

    Stanford|ONLINE gp202.class.stanford.edu

    5

  • Common Elastic Modulii

    In all cases replace stress (S) with effective stress () for fluid saturated porous rock.

    Youngs Modulus, E S11 only non-zero stress

    11

    11SE

    =

    Possions Ratio, S11 only non-zero stress

    11

    33

    =

    G = 12S1313

    "

    # $ $

    %

    & ' '

    Shear Modulus, G Sij only non-zero stress

    Bulk Modulus, K

    (Compressibility, = K-1)

    00

    00SK

    =

    Stanford|ONLINE gp202.class.stanford.edu

    6

  • Elastic Modulii and Seismic Waves

    In an elastic, isotropic, homogeneous solid

    += 3

    G4KVpP wave

    =

    GVsShear Wave

    Liquid G = 0 , Vs = 0

    3G4KVM 2p +==M Modulus

    ( )2s2p

    2s

    2p

    VV2V2V

    =

    Liquid = 0.5

    Poissons Ratio

    *25.0= 73.13

    1VV

    s

    p ==

    Poisson Solid

    = G

    * common value for rocks

    Equation 3.5 pg.63

    Equation 3.6 pg.64

    Stanford|ONLINE gp202.class.stanford.edu

    7

  • Constitutive Laws

    Figure 3.1 a,b pg.57

    Stanford|ONLINE gp202.class.stanford.edu

    8

  • Continuum Approach to Effective Stress

    Stress = Force/AreaTotal S = F/AT

    For an impermeable membrane:

    Assumptions: Volume large compared to elements

    Interconnected porosity

    Statistically Averaged Volumes

    a 0 lim ac = g Intergranular Stress:

    Effective Stress: g = S - (1 - a) Pp = S - Pp

    Force Balance at Grain Scale:

    FT = Fg where a = Ac/AT S AT = Acc + (AT - Ac)Pp

    S = ac + (1 - a)Pp where a = Ac/AT

    Ac

    g stress acting on grains Stanford|ONLINE gp202.class.stanford.edu

    9

  • Pp does not affect shear stress or shear strain, but does affect elastic moduli, rock strength, frictional strength

    Simple (Terzaghi) form

    pijijij PS =

    Exact form

    pijijij PS =

    Biot Constant

    g

    b

    KK

    1= 10 Kb Drained bulk modulus of porous rock

    Kg Bulk modulus of solid grains

    Solid rock without pores. No pore pressure influence

    Extremely compliant porous solid. Maximum pore pressure influence

    Lim = 0

    0

    Lim = 1

    Kb 0

    Equations 3.8 & 3.10 pg.66 & 68

    Stanford|ONLINE gp202.class.stanford.edu

    10

    Effective Stress

  • Figure 3.5 c pg.67

    Stanford|ONLINE gp202.class.stanford.edu

    11

    Laboratory Measured Values of Alpha

  • ij =12G Sij ijS00( ) +

    13K ijS00

    3K ijPp

    Shear strain not affected by Pp:

    KP

    KS p00

    00

    =

    Elastic modulii (and strength) are dependent on effective stress

    Complexity: Modulii are rate dependent because undrained rock is stiffer than drained rock (pore fluid supports external stress)

    Stanford|ONLINE gp202.class.stanford.edu

    12

    Poroelasticity

  • Dispersion

    2000

    3000

    4000

    5000

    4

    5

    Log Frequency (Hz)

    1 cp

    10 cp

    100 cp

    Vp

    Vs

    Veloc

    ity (m

    /s)

    Log Lab

    Figure 3.6 b pg.70

    Stanford|ONLINE gp202.class.stanford.edu

    13

  • Cycles of Hydrostatic Loading & Unloading Weak Sand

    Figure 3.7 a,b pg.71

    Stanford|ONLINE gp202.class.stanford.edu

    14

  • Poro-Elastic Coupling Within a Reservoir How PpAffects SH

    Using instantaneous application of force and pressure with no lateral strain:

    ( )pvpH PSPS

    =1

    Take the derivative of both sides and simplify

    ( )( ) pH

    P121S

    =

    Pp32SH =1,25.0 == if

    g

    b

    KK

    =1

    Sv

    SH

    Stanford|ONLINE gp202.class.stanford.edu

    15

  • Section 1 Basic Definitions Poroelasticity and Effective Stress

    Section 2 Viscoplasticity (Creep) in Weak

    Sands

    Section 3 Viscoplasticity (Creep) in Shales

    Outline

    Stanford|ONLINE gp202.class.stanford.edu

    16

  • Constitutive Laws

    Figure 3.1 c,d pg.57

    Stanford|ONLINE gp202.class.stanford.edu

    17

  • Viscoelastic/Viscoplastic Deformation of Unconsolidated Sands

    The fact that the grains are not cemented allows these materials to creep (deform as a function of time at a constant stress or at constant strain, for stress to relax with time).

    The presence of clay greatly exacerbates creep in uncemented sands.

    Stanford|ONLINE gp202.class.stanford.edu

    18

  • Loading History

    Stanford|ONLINE gp202.class.stanford.edu

    19

  • Ottawa Sand with Montmorillonite Clay

    Stanford|ONLINE gp202.class.stanford.edu

    20

  • Observations of Instantaneous and Viscous Deformation in Dry Wilmington Sand

    510

    1520

    2530

    00.005

    0.01

    0.015

    0.02

    0.025

    0.03

    0.035

    0.04

    0 10 20 30 40

    Drained Hydrostatic Load CyclingCleaned and Dried Wilmington Sand

    Con

    finin

    g P

    ress

    ure

    (MP

    a)A

    xial Strain (in/in)

    Time (hr)

    Confining Pressure

    Instantaneous Strain

    Creep Strain

    Figure 3.8 a pg.73

    Stanford|ONLINE gp202.class.stanford.edu

    21

  • Creep and Clay Content

    Stanford|ONLINE gp202.class.stanford.edu

    22

  • Stress History Triaxial Conditions

    Stanford|ONLINE gp202.class.stanford.edu

    23

  • Attributes of Viscoelastic/Viscoplastic Materials

    Figure 3.10 a-d pg.75

    Stanford|ONLINE gp202.class.stanford.edu

    24

  • Wilmington Sand Stress Relaxation

    Figure 3.11 a pg.77

    Stanford|ONLINE gp202.class.stanford.edu

    25

  • Ideal Viscoelastic Materials (Time-Dependent Stress and Strain)

    Stanford|ONLINE gp202.class.stanford.edu

    26

  • Wilmington Creep and Standard Linear Solid

    strain

    Stanford|ONLINE gp202.class.stanford.edu

    27

  • Figure 3.12 pg.78

    Exploring Viscoelastic Models

  • Getting the Constitutive Law Right Matters

    29 Figure 3.13a pg.79

    Stanford|ONLINE gp202.class.stanford.edu

    29

  • Experimental Procedure - Attenuation

    510

    1520

    2530

    35

    -0.0

    10

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0 20 40 60 80 100

    120

    Constant Frequency Test ProcedureCleaned and Dried WIlmington Sand

    Load Frequency = 1MPa/hr

    Con

    finin

    g P

    ress

    ure

    (MP

    a)A

    xial Strain (in/in)

    Time (Hr)

    Confining Pressure

    Axial Strain

    Stre

    ss

    Strain

    Stanford|ONLINE gp202.class.stanford.edu

    30

  • Attenuation Independent of Frequency

    Figure 3.13b pg.79

    Stanford|ONLINE gp202.class.stanford.edu

    31

  • Experimental Procedure - Modulus Dispersion

    510

    1520

    00.

    005

    0.01

    0.01

    50.

    02

    0 10 20 30 40 50 60

    Frequency Cycling Test Procedure

    Con

    finin

    g P

    ress

    ure

    (MP

    a)A

    xial Strain (in/in)

    Time(hr)

    Axial Strain

    Confining Pressure Pressure Amplitude

    MeanPressure

    Stanford|ONLINE gp202.class.stanford.edu

    32

  • Best-fitting Model (Low Frequency)

    Both the instantaneous (j) and time-dependent components of long term strain have power law functional forms. Written in terms of porosity (to simulate compaction), we have where the first term describes the instantaneous porosity change and the second term describes the normalized creep strain, where: Which leaves 4 unknowns:

    2 constants (A, 0) and 2 exponents (b,d) Determinable with 2 experiments

    bcjc tAPtP )/(),( =

    dcj P0 =

    Equation 3.16 pg.81

    Equation 3.15 pg.80

    i

    i

    Stanford|ONLINE gp202.class.stanford.edu

    33

  • Best-Fitting Power Law Model

    Fits very low frequency (reservoir compaction)

    Intermediate frequency (laboratory testing)

    High Frequency (seismic to sonic to ultrasonic modulus dispersion)

    34

  • Modeling Instantaneous Strain in Dry Wilmington Sand

    i = 0Pcd

    0.23

    0.24

    0.25

    0.26

    0.27

    0.28

    0.1 1 10 100

    Wilmington Sand Dry/Drained/Hydrostatic

    Constant Rate Test

    Rate = 10 -6 /s

    y = 0.27107 * x^(-0.046452) R= 0.99479 P

    oros

    ity

    Effective Pressure (MPa)

    0

    d

    Stanford|ONLINE gp202.class.stanford.edu

    35

  • Modeling Creep Strain in Dry Field X (GOM) Sand

    (Pc,t) = i - (Pc/A)tb

    Stanford|ONLINE gp202.class.stanford.edu

    36

  • Creep Parameters For Two Uncemented Sands

    Reservoir sand

    A

    (creep)

    b

    (creep)

    0

    (instant)

    d

    (instant)

    Notes

    Wilmington

    5410.3

    0.1644

    0.271

    -0.046

    Stiffer and more viscous

    GOM Field X

    6666.7

    0.2318

    0.246

    -0.152

    Softer and less viscous

    Table 3.2 pg.82

    Stanford|ONLINE gp202.class.stanford.edu

    37

  • Best-Fitting Model: Wilmington

    Best-Fitting Model: Field X, GOM

    Maximum field compaction predicted: >10%

    Maximum field compaction predicted: ~1.5% Observed field compaction ~ 2%

    232.0152.0 )7.6666

    (246.0),( tPPtP ccc =

    164.0046.0 )3.5410

    (271.0),( tPPtP ccc =

    Equation 3.17 pg.81

    Equation 3.20 pg.82

    Stanford|ONLINE gp202.class.stanford.edu

    38

  • Section 1 Basic Definitions Poroelasticity and Effective Stress

    Section 2 Viscoplasticity (Creep) in Weak

    Sands

    Section 3 Viscoplasticity (Creep) in Shales

    Outline

    Stanford|ONLINE gp202.class.stanford.edu

    39

  • Organic Rich Shales

    Bedding plane and sample cylinder axis is either

    parallel (horizontal samples) or

    perpendicular (vertical samples)

    3-10 % porosity

    All room dry, room temperature experiments

    Sample group Clay Carbonate QFP TOC (wt%)

    Barnett-dark 29-43 0-6 48-59 4.1-5.8

    Barnett-light 2-7 37-81 16-53 0.4-1.3

    Haynesville-dark 36-39 20-23 31-35 3.7-4.1

    Haynesville-light 20-22 49-53 23-24 1.7-1.8

    Fort St. John 32-39 3-5 54-60 1.6-2.2

    Eagle Ford-dark 12-21 46-54 22-29 4.4-5.7

    Eagle Ford-light 6-14 63-78 11-18 1.9-2.5

    Stanford|ONLINE gp202.class.stanford.edu

    40

  • Recent Publications

    Physical properties of shale reservoir rocks

    Sone, H and Zoback, M.D. (2013), Mechanical properties of shale-gas reservoir rocksPart 1: Static and dynamic elastic properties and anisotropy, Geophysics, v. 78, no. 5, D381-D392, 10.1190/GEO2013-0050.1

    Sone, H and Zoback, M.D. (2013), Mechanical properties of shale-gas reservoir rocksPart 2: Ductile creep, brittle strength, and their relation to the elastic modulus, Geophysics, v. 78, no. 5, D393-D402, 10.1190/GEO2013-0051.1

    Stanford|ONLINE gp202.class.stanford.edu

    41

  • Experimental Procedures

    Hydrostatic, Triaxial Stage: Pressure applied in steps Held for 3 hrs 2 weeks

    Failure & Friction: intact/frictional rock strength

    Pc

    Pax

    Stanford|ONLINE gp202.class.stanford.edu

    42

  • A Typical Experiment

    Friction

    Strength

    Static Modulii

    Dilatancy

    Creep?

    Stanford|ONLINE gp202.class.stanford.edu

    43

  • Experimental Procedures

    Hydrostatic, Triaxial Stage: Pressure applied in steps Held for 3 hrs 2 weeks

    Failure & Friction: intact/frictional rock strength

    From each pressure step,

    The pressure ramp gives elastic modulus

    The pressure hold gives the creep response

    Pc

    Pax

    Stanford|ONLINE gp202.class.stanford.edu

    44

  • 39%clay

    25%

    22% clay

    33%

    5% clay

    Creep Increases with Clay Content

    Stanford|ONLINE gp202.class.stanford.edu

    45

  • Eagleford Shale

    Stanford|ONLINE gp202.class.stanford.edu

    46

  • Creep Strain vs. Clay and E

    Amount of creep (ductility) depends on clay content and orientation of loading with respect to bedding

    Youngs modulus correlates with creep amount very well

    Normal

    To Bedding

    Parallel

    To Bedding

    Stanford|ONLINE gp202.class.stanford.edu

    47

  • Youngs Modulus

    Youngs modulus falls within rough estimates of Voigt-Reuss bounds

    Anisotropy exists between vertical and horizontal samples

    Stanford|ONLINE gp202.class.stanford.edu

    48

  • Analysis of Viscoplasticity

    1. Describe the behavior quantitatively to

    Creep Constitutive Relation

    2. Relate the creep behavior to stress relaxation using Boltzmann Superposition

    3. Investigate the implications of creep over

    geologic time scales

    Stanford|ONLINE gp202.class.stanford.edu

    49

  • Long term creep experiments

    )log(tAcreep =

    ncreep Bt=

    Most creep observed were only 3 hours long, and suggested logarithm function

    Long experiments show that it is more closer to a power-law in the long term

    Furthermore, the total response (elastic + creep) can be described by a power law

    Stanford|ONLINE gp202.class.stanford.edu

    50

  • Power-Law Parameters

    nBt=

    Parameters B and n are found for every creep step by fitting a line to the creep compliance, J(t), in log-log space

    *J(t) determined by deconvolving creep data with stress ramp input

    Compliant rocks have higher B and higher n

    Stanford|ONLINE gp202.class.stanford.edu

    51

  • Contours are % strain under 50 MPa differential load Reasonable axial strain magnitudes of 0.1~3%

    Creep Strain over Geological Time

    Stanford|ONLINE gp202.class.stanford.edu

    52

  • q Stress Accumulation under constant strain rate q 150 Ma - Half of age

    of Barnett shale q 10-19 s-1 - Stable

    intraplate

    q Significant stress relaxation observed for high n

    ntnB

    t

    = 1)1(

    1)(

    Predicting Stress Anisotropy over Geological Time

    Stanford|ONLINE gp202.class.stanford.edu

    53