Lecture 3 Thermodynamics

48
Lecture_ 3 Energy Transfer by Heat, Work, and Mass

Transcript of Lecture 3 Thermodynamics

Page 1: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 1/48

Lecture_ 3 Energy Transfer by

Heat, Work, and Mass

Page 2: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 2/48

Processes

 Process line, or path

State 1

State 2

P1 

P 3 

P 2 

Page 3: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 3/48

Interactions

Ma

System f( P k , k =1...N)=0 

Surroundings

 Mass Flow

 Mass FlowWork

 Heat

Page 4: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 4/48

Mechanical work flow

 Motor Electrical Power 

System

 Boundary

Work Flow

The turning fan

 represents the

 result of a mechanical work

 transfer.

Page 5: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 5/48

Energy Transfer

• Energy transfer to/from closed systems –  Heat (Q)

 –  Work (W )

• Energy transfer to/from open systems (control

volumes)

 –  Heat (Q)

 –  Work (W )

 –  Mass flow )(   m

Page 6: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 6/48

3-1

FIGURE 3-9 Specifying thedirections of

heat and work.

Page 7: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 7/48

Heat

• Heat (Q) is the transfer of energy due to atemperature difference

 –  a system w/o heat transfer is an adiabatic system

 –  SI units: kJ

• Heat rate, (kJ/s or kW)

• Heat per unit mass, q = Q/m

• Sign convention:

 –  Q > 0: heat transferred to system from surroundings –  Q < 0: heat transferred from system to surroundings

Q

Page 8: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 8/48

Heat Transfer Modes

• Conduction –  transfer of heat through a material due to random molecular

or atomic motion; most important in solids

• Radiation

 –  transfer of heat due to emission of electromagnetic waves,usually between surfaces separated by a gas or vacuum

• Convection

 –  transfer of heat between a solid surface and fluid due to

combined mechanisms of i) fluid conduction at surface; ii)

fluid flow within boundary layer

Page 9: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 9/48

Conduction Heat Transfer

• Fourier’s law of conduction: 

dx

dT kAQcond 

Page 10: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 10/48

Convection Heat Transfer

•  Newton’s law of “cooling”, or convection: 

)(   f  sconv T T hAQ

Page 11: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 11/48

Radiation Heat Transfer

• Stefan-Boltzmann law of radiation (between a

small surface A of emissivity e  and large

surroundings):

44

surr srad  T T  AQ e   

Page 12: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 12/48

Work

• Work (W ) is the energy transfer associated with aforce acting through a distance:

• Work rate or power 

• Work per unit mass, w = W/m

• Sign convention

 –  W > 0: work done by system on surroundings

 –  W < 0: work done on system by surroundings

(kJ)  sd F W 

kW)or(kJ/s V   F W 

Page 13: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 13/48

Work

dsdt ds

dsdV m

dt dV msd F 

     V d      V V      

ds

sd F d W d s

Page 14: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 14/48

Work

KE W 

V V m

msd F W  s

s

2121

21

22

21

2

2

2

1

Page 15: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 15/48

Work

 m

gm

F s

sd F d W d s

Page 16: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 16/48

Work

PE KE 

ssgmKE sd F s

s

2121

1221

2

1

Page 17: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 17/48

Types of Work

• Moving boundary (compression/expansion) work • Shaft work 

• Spring work 

• Electrical work 

• Other forms; work associated with: –  Acceleration

 –  Gravity

 –  Polarization

 –  Magnetization

 –  Solid deformation

 –  Liquid film stretching

Page 18: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 18/48

Moving Boundary Work• Associated with a volume change of a fluid system

(aka compression-expansion work)

2

2

1

2

1

PdV W 

PAdxFdxW 

b

 x

 x

 x

 x

FIGURE 3-19 A gas does adifferential amountof work dW b  as it

forces the piston tomove by adifferential amountd s.

Page 19: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 19/48

3-3

FIGURE 3-20 The area underthe processcurve on a P-V 

diagramrepresents theboundary work.

Page 20: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 20/48

Moving Boundary Work, cont.

• Expansion: dV > 0, W b > 0

• Compression: dV < 0, W b < 0

• Work processes on P-V diagram:

curvesbetweenarea

)(curve1-2underarea

(-)curve2-1underarea

exp

1

221,exp

2

112,

W W W 

PdV W W 

PdV W W 

compcycle

b

bcomp

Page 21: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 21/48

Moving Boundary Work, cont.

• Special cases:

1) if  V = constant, W b = 0

2) if  P = constant, W b = P(V 2-V 1)

3) if  PV n  = constant (known as a  polytropic process),

)1( ln

)1( 1

1

211

1122

nV 

V V PW 

nn

V PV PW 

b

b

Page 22: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 22/48

3-4

FIGURE 3-22 The net workdone during acycle is thedifferencebetween thework done bythesystem and the

work done onthe system.

Page 23: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 23/48

Shaft Work

• Associated with a rotating shaft

unit time)persrev' ( 2 

s)revolutionof no. ( 2 

thenconstant, if  

torque)( 2

1

2

1

nnW 

nnW 

d Frd W 

sh

sh

sh

  

  

      

  

  

  

Page 24: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 24/48

Spring Work

• Associated with the extension or compression of aspring; if spring is linear, then force obeys Hooke’s

law,

2

1

2

221

2

1

 

andconstant)spring( 

 x xk 

kxdxW 

k kxF 

sp

sp

Page 25: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 25/48

Electrical Work

• Associated with the motion of electrons due to an

electromotive force

V  

V  

V  V  

 I W 

 I t  I 

 N 

 N sd  E  N 

sd F W 

e

e

current)( 

voltage)( 

charge)electric( 2

1

2

1

Page 26: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 26/48

Evaluating work at a

boundary...

Page 27: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 27/48

 Note: P gas > P ambient

 Direction of Motion

 x

 X   p ambient

The gas is the system for analysis.

 Force balance at the boundary on the

 piston, where the boundary deforms.

 p gas 

Page 28: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 28/48

)0,0,( xF F 

c

ambient gas x

g

gm

 A p pF 

 X 

 P ambient

 P gas

 dx

The net force on

 the piston.

Page 29: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 29/48

Total work done

dxF W  xd 

dx

g

gm A p A pW 

 x

 x

 x

 x c

ambgas

 

 

 

 

2

1

2

1

Page 30: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 30/48

 p ambient

 p gas > p ambient

 X 

dxg

gm A p A pW  x

 x

 x

 x c

ambgas   

  

2

1

2

1

Component of work due

 to expansion of the gasWork to raise

 the piston

Page 31: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 31/48

Work of Expansion

2

1

 x

 x

e pAdxW 

ambiengas p p p

Page 32: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 32/48

Work of Expansion: p-dV work

2

1

e pdV W 

 AdxdV  )(V  p p

Page 33: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 33/48

Evaluating a equilibrium expansion process

 p

V = AxV 1 V  2 

 p1 

 p 2 

)(V  p p

n egra or

Page 34: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 34/48

n egra ora quasistatic process

 p

V = AxV 1 V  2 

 p1 

 p 2 

 pAdx pdV W e d 

Page 35: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 35/48

Conservation of Mass

• “Mass can neither be created nor destroyed”  –  mass and energy can be converted to each other

according to Einstein’s E=mc2, but this effect is

negligible except for nuclear reactions)

• For closed systems, this principle imposes m =constant since mass cannot cross the system

boundary

• For control volumes, the mass entering andleaving the system may be different and must be

accounted for

Page 36: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 36/48

Key concepts and terms

Equilibrium process

Kinetic energy

Path-dependent workQuasistatic process

Work at a system boundary

Work transferWork of expansion

Page 37: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 37/48

Mass and Volume Flow Rates

• Mass flow rate: fluid mass conveyed per unit time[kg/s]

where V n = velocity normal to area [m/s]  = fluid density [kg/m3]

 A = cross-sectional area [m2]

 A ndAm V     

Mass and Volume Flow Rates, cont.

Page 38: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 38/48

Mass and Volume Flow Rates, cont.

• For most pipe flows,    = constant and the average

velocity (V ) is used:

• Volume flow rate is given by

v

 Am

 Am ave

or

  

v

V V m

 AV 

  

then

V  

)(V 

Page 39: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 39/48

Conservation of Mass Principle - Control

Volume

• Net mass transfer during a process is equal to thenet change in total mass of the system during that

process

where i = inlet, e = exit, 1 = initial state, 2 = final state

• in rate form:

• In fluid mechanics, this is often referred to as the

continuity equation 

systemei mmmm )( 12

dt 

dm

mm

system

ei

Page 40: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 40/48

FIGURE 3-48 Schematic forflow work.

Steady-Flow Processes

Page 41: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 41/48

Steady Flow Processes

• Steady-flow or steady-state –  a condition where allfluid and flow properties, heat rates, and work 

rates do not change with time.

 –  mathematically:

 –  applied to mass balance:

0dt d 

 0dt 

dmsystem

Steady-Flow Processes, cont.

Page 42: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 42/48

Steady Flow Processes, cont.

• Conservation of mass during a steady-flow process:

• If control volume is single-stream (i.e., one inlet, one

exit), then

ei mm

2

22

1

11

21

orv

 AV 

v

 AV 

mmm

Page 43: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 43/48

Incompressible Flow

• If     = constant, then the mass flow is consideredincompressible

 –  for steady-flow:

 –  for single-stream, steady-flow:

ei V V 

2211

21

or 

V  V   A A

V  V  

Total Energy of a Flowing Fluid

Page 44: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 44/48

Total Energy of a Flowing Fluid

• A flowing fluid contains internal, kinetic, and

potential energies:

• Fluid entering or leaving a control volume has an

additional form of energy known as flow energy,

which represents the work required to “push” the

fluid across a boundary:

gzue

gzum E 

2

21

2

21 or ,)(

mPvPV W   flow energyflow

Page 45: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 45/48

3-6

FIGURE 3-51 

The total energyconsists of three partsfor a nonflowing fluidand four parts for aflowing fluid. 

Page 46: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 46/48

Total Energy of a Flowing Fluid, cont.

• The total energy of a flowing fluid (on a unit-mass

basis, ) becomes

• Using the definition of enthalpy (h),

Pvgzu 2

21 V    

gzh 2

21 V   

Page 47: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 47/48

Energy Transport by Mass

• Amount of energy transport:

• Rate of energy transport:

)(2

21 gzhmm E 

mass V   

)( 221 gzhmm E mass V 

  

Page 48: Lecture 3 Thermodynamics

8/3/2019 Lecture 3 Thermodynamics

http://slidepdf.com/reader/full/lecture-3-thermodynamics 48/48

FIGURE 3-58 

The absorption ofradiation incident on

an opaque surfaceof absorptivity .