Lecture 3 Jan 17 2012

download Lecture 3 Jan 17 2012

of 22

Transcript of Lecture 3 Jan 17 2012

  • 8/2/2019 Lecture 3 Jan 17 2012

    1/22

  • 8/2/2019 Lecture 3 Jan 17 2012

    2/22

    Winter Corrosion For Engineers ENGR 4610 - 2 -

    Thermodynamics of Corrosion

    Equilibrium constants

    Basic thermodynamicrelationships

    H, G, S, Cp

    Gibbs free energy

    Free energy of formation

    Corrosion is the destructive attack of a metal by chemical

    or electrochemical reaction with its environment.

  • 8/2/2019 Lecture 3 Jan 17 2012

    3/22

    Winter Corrosion For Engineers ENGR 4610 - 3 -

    Chemical Thermodynamics

    S = Entropy, the degree of disorder in a system

    A chemical reaction is not favoured when

    A chemical reaction is favoured when theentropy increases, i.e., S > 0

    A chemical reaction is favoured when

    A chemical reaction is not favoured when the

    entropy decreases, i.e., S < 0

    H = Enthalpy, the chemical heat in a reaction

    G = H TS the Gibbs Free Energy, the chemical

    energy of the system

    G < 0, Spontaneous

    G > 0, Not spontaneous

    G = 0, Equilibrium

    it requires heat, i.e., H > 0

    it releases heat, i.e., H < 0

  • 8/2/2019 Lecture 3 Jan 17 2012

    4/22

    Winter Corrosion For Engineers ENGR 4610 - 4 -

    Consider the generalized reaction:xM + yO2 MxO2y

    Greac =

    Gf(MxO2y) - (

    xGf(M) +

    yGf(O2))

    = Gf(MxO2y)

    Free Energy of Formation

    Since the free energy is a state function, we can calculate

    the change in free energy from the free energy of the initialand final states.

    That is: 0 0

    oxidation reaction

    = GfStandard

  • 8/2/2019 Lecture 3 Jan 17 2012

    5/22

    Winter Corrosion For Engineers ENGR 4610 - 5 -

    -(GT-H298)/T

    Hf ,0 Hf,298 Gf,298 H298-H0 S298 Cp,298 500K 700K 1000K

    kJ/mol kJ/mol kJ/mol kJ/mol J/mol/K J/mol/K J/mol/K J/mol/K J/mol/K

    C(s, graphite) 0 0 0 1.05 5.74 8.53 6.887 9.063 12.636

    O2 0 0 0 8.68 205.03 29.35 208.413 213.501 220.769

    CO2 -393.14 -393.51 -394.36 9.363 213.64 37.11 218.187 225.287 235.806

    Consider the reaction:

    C(s, graphite) + O2(g) CO2(g)

    We can look up the basic thermodynamic values for the

    reactants and products,

    EXAMPLE

  • 8/2/2019 Lecture 3 Jan 17 2012

    6/22

    Winter Corrosion For Engineers ENGR 4610 - 6 -

    Element -(GT-H298)/T

    Hf ,0 Hf,298 Gf,298 H298-H0 S298 Cp,298 500K 700K 1000K

    kJ/mol kJ/mol kJ/mol kJ/mol J/mol/K J/mol/K J/mol/K J/mol/K J/mol/K

    C(s, graphite) 0 0 0 1.05 5.74 8.53 6.887 9.063 12.636

    O2 0 0 0 8.68 205.03 29.35 208.413 213.501 220.769

    CO2 -393.14 -393.51 -394.36 9.363 213.64 37.11 218.187 225.287 235.806

    From this table, we can extract the free energy of

    reaction:

    ELEMENT Gf / kJmol-1

    C(s, graphite) 0.00

    O2(g) 0.00

    CO2(g) -394.36

    C(s, graphite) + O2(g) CO2(g)

    EXAMPLE

    At room temperature, this reaction is spontaneous and

    graphite is unstable in oxygen.

    Greac = Gf(CO2) = -394.36 kJmol-1

  • 8/2/2019 Lecture 3 Jan 17 2012

    7/22Winter Corrosion For Engineers ENGR 4610 - 7 -

  • 8/2/2019 Lecture 3 Jan 17 2012

    8/22Winter Corrosion For Engineers ENGR 4610 - 8 -

    Temperature dependence?

    The data are for the reaction at room temperature

    The free energy values are determined for a

    constant temperature and pressure

    These are the normal conditions for mostchemical reactions studied

  • 8/2/2019 Lecture 3 Jan 17 2012

    9/22Winter Corrosion For Engineers ENGR 4610 - 9 -

    Temperature dependence

    Recall the definition of Gibbs free energy:

    G = H - TS

    Where H is the enthalpy, S is the entropy, and T is temperature.

    dG = dH - SdT - TdS

    Recall that: dH = CpdTand dS = (Cp/T) dT

    dG = -SdT

    Cp is the heat capacityat constant pressure

  • 8/2/2019 Lecture 3 Jan 17 2012

    10/22

    Winter Corrosion For Engineers ENGR 4610 - 10 -

    Temperature dependence

    G = H - TS

    Starting from the definition of G,

    Substituting S gives an expression to determine the

    temperature dependence for the free energy

    dG = -SdT

    =dGdT T

    G - H

    Gibbs-Helmholtz Equation

  • 8/2/2019 Lecture 3 Jan 17 2012

    11/22

    Winter Corrosion For Engineers ENGR 4610 - 11 -

    -(GT-H298)/T

    Hf ,0 Hf,298 Gf,298 H298-H0 S298 Cp,298 500K 700K 1000K

    kJ/mol kJ/mol kJ/mol kJ/mol J/mol/K J/mol/K J/mol/K J/mol/K J/mol/K

    C(s, graphite) 0 0 0 1.05 5.74 8.53 6.887 9.063 12.636

    O2 0 0 0 8.68 205.03 29.35 208.413 213.501 220.769

    CO2 -393.14 -393.51 -394.36 9.363 213.64 37.11 218.187 225.287 235.806

    Often, we want to know the thermodynamics of the reaction

    at temperatures other than room temperature.

    C(s, graphite) + O2(g) CO2(g)

    To do this, we use the Gibbs-Helmholtz relationship,

    and look up the basic thermodynamic values for the reactants

    and products,

    =

    dGdT T

    G - H= F The Free Energy Function-(GT-H298)/T

    500K 700K 1000K

    J/mol/K J/mol/K J/mol/K

    6.887 9.063 12.636

    208.413 213.501 220.769

    218.187 225.287 235.806

  • 8/2/2019 Lecture 3 Jan 17 2012

    12/22

    Winter Corrosion For Engineers ENGR 4610 - 12 -

    C(s, graphite) + O2(g) CO2(g)

    ELEMENT -(Gf-H298)/T /

    Jmol-1K-1

    500 K

    C(s, graphite) 6.887

    O2(g) 208.413

    CO2(g) 218.187

    Freac = Ff(CO2) - (Ff(C) + Ff(O2))Once again, the value of the function (F) is given by:

    So,

    -(Gf - H298)/T = F

    218.187 - (6.887 + 208.413)

    2.887 Jmol-1K-1

  • 8/2/2019 Lecture 3 Jan 17 2012

    13/22

    Winter Corrosion For Engineers ENGR 4610 - 13 -

    C(s, graphite) + O2(g) CO2(g)

    -(Gr - H298)/T = 2.887 Jmol-1K-1 at 500K

    Element -(GT-H298)/T

    Hf ,0 Hf,298 Gf,298 H298-H0 S298 Cp,298 500K 700K 1000K

    kJ/mol kJ/mol kJ/mol kJ/mol J/mol/K J/mol/K J/mol/K J/mol/K J/mol/K

    C(s, graphite) 0 0 0 1.05 5.74 8.53 6.887 9.063 12.636

    O2 0 0 0 8.68 205.03 29.35 208.413 213.501 220.769

    CO2 -393.14 -393.51 -394.36 9.363 213.64 37.11 218.187 225.287 235.806

    or:

    Gr - H298 = -2.887 x 500 = -1443.5 Jmol-1

    So:

    = -1.4435Gr,500 + -393.51 = -394.95 kJmol-1

    Hreac =

    Hf(CO2) - (

    Hf(C) +

    Hf(O2))

    -394.36 kJmol-1

  • 8/2/2019 Lecture 3 Jan 17 2012

    14/22

    Winter Corrosion For Engineers ENGR 4610 - 14 -

    C(s, graphite) + O2(g) CO2(g) Summary

    These calculations can be repeated to determinethe free energy at different temperatures.

    =((GT-H298)/T)

    C K -(GT-H298)/T Gr,T

    J/mol/K J/mol kJ/mol

    24.85 298 -394.36

    226.85 500 2.887 1443.5 -394.95

    426.85 700 2.723 1906.1 -395.42726.85 1000 2.401 2401.0 -395.91

    Temperature

  • 8/2/2019 Lecture 3 Jan 17 2012

    15/22

    Winter Corrosion For Engineers ENGR 4610 - 15 -

    =dGdT T

    G - H

  • 8/2/2019 Lecture 3 Jan 17 2012

    16/22

    Winter Corrosion For Engineers ENGR 4610 - 16 -

    Plot the free energy

    when one mole ofgaseous oxygen at

    1 atm pressure

    combines with a pure

    element to form oxide.

    Ellingham diagrams

    From A. Cottrell,

    An Introduction to

    Metallurgy, 1980.

  • 8/2/2019 Lecture 3 Jan 17 2012

    17/22

    Winter Corrosion For Engineers ENGR 4610 - 17 -

  • 8/2/2019 Lecture 3 Jan 17 2012

    18/22

    Winter Corrosion For Engineers ENGR 4610 - 18 -

    Thermodynamics of Corrosion

    Equilibrium constants

    Basic thermodynamicrelationships

    H, G, S, Cp

    Gibbs free energy

    Free energy of formation

    Corrosion is the destructive attack of a metal by chemical

    or electrochemical reaction with its environment.

  • 8/2/2019 Lecture 3 Jan 17 2012

    19/22

    Winter Corrosion For Engineers ENGR 4610 - 19 -

    Plot the free energy

    when one mole ofgaseous oxygen at

    1 atm pressure

    combines with a pure

    element to form oxide.

    Ellingham diagrams

    From A. Cottrell,

    An Introduction to

    Metallurgy, 1980.

  • 8/2/2019 Lecture 3 Jan 17 2012

    20/22

    Winter Corrosion For Engineers ENGR 4610 - 20 -

    Ellingham diagrams

    Free energy of

    formation for the metaloxides have positive

    slopes,

    Free energy becomes

    more positive withincreasing temperature

    Smaller driving force

    with increasing

    temperature

  • 8/2/2019 Lecture 3 Jan 17 2012

    21/22

    Winter Corrosion For Engineers ENGR 4610 - 21 -

    Ellingham diagrams

    At a sufficiently high

    temperature, the metal

    oxide will release oxygenand exist as a pure

    metal

    M + xO2 MO2x

    M + xO2 MO2x

    Me

    talStable

    OxideSta

    ble

  • 8/2/2019 Lecture 3 Jan 17 2012

    22/22

    Winter Corrosion For Engineers ENGR 4610 - 22 -

    Ellingham diagrams

    The lower the line, the

    more stable the oxide

    M + xO2 MO2x

    Me

    talStable

    OxideSta

    ble

    =dGdT

    -SKinks in thediagram indicatephase changes