Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory...

40
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004

Transcript of Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory...

Page 1: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

Introduction toCMOS VLSI

Design

Lecture 3: CMOS Transistor Theory

David Harris

Harvey Mudd CollegeSpring 2004

Page 2: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 2

Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V Characteristics Gate and Diffusion Capacitance Pass Transistors RC Delay Models

Page 3: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 3

Introduction So far, we have treated transistors as ideal switches An ON transistor passes a finite amount of current

– Depends on terminal voltages– Derive current-voltage (I-V) relationships

Transistor gate, source, drain all have capacitance– I = C (V/t) -> t = (C/I) V– Capacitance and current determine speed

Also explore what a “degraded level” really means

Page 4: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 4

MOS Capacitor Gate and body form MOS capacitor Operating modes

– Accumulation– Depletion– Inversion

polysilicon gate

(a)

silicon dioxide insulator

p-type body+-

Vg < 0

(b)

+-

0 < Vg < Vt

depletion region

(c)

+-

Vg > Vt

depletion regioninversion region

Page 5: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 5

Terminal Voltages Mode of operation depends on Vg, Vd, Vs

– Vgs = Vg – Vs

– Vgd = Vg – Vd

– Vds = Vd – Vs = Vgs - Vgd

Source and drain are symmetric diffusion terminals– By convention, source is terminal at lower voltage– Hence Vds 0

nMOS body is grounded. First assume source is 0 too. Three regions of operation

– Cutoff– Linear– Saturation

Vg

Vs Vd

VgdVgs

Vds+-

+

-

+

-

Page 6: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 6

nMOS Cutoff No channel Ids = 0

+-

Vgs = 0

n+ n+

+-

Vgd

p-type body

b

g

s d

Page 7: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 7

nMOS Linear Channel forms Current flows from d to s

– e- from s to d Ids increases with Vds

Similar to linear resistor

+-

Vgs > Vt

n+ n+

+-

Vgd = Vgs

+-

Vgs > Vt

n+ n+

+-

Vgs > Vgd > Vt

Vds = 0

0 < Vds < Vgs-Vt

p-type body

p-type body

b

g

s d

b

g

s d Ids

Page 8: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 8

nMOS Saturation Channel pinches off Ids independent of Vds

We say current saturates Similar to current source

+-

Vgs > Vt

n+ n+

+-

Vgd < Vt

Vds > Vgs-Vt

p-type bodyb

g

s d Ids

Page 9: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 9

I-V Characteristics In Linear region, Ids depends on

– How much charge is in the channel?– How fast is the charge moving?

Page 10: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 10

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 11: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 11

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Page 12: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 12

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C = Cg = oxWL/tox = CoxWL V =

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 13: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 13

Channel Charge MOS structure looks like parallel plate capacitor

while operating in inversion– Gate – oxide – channel

Qchannel = CV C = Cg = oxWL/tox = CoxWL V = Vgc – Vt = (Vgs – Vds/2) – Vt

n+ n+

p-type body

+

Vgd

gate

+ +source

-

Vgs

-drain

Vds

channel-

Vg

Vs Vd

Cg

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.9)

polysilicongate

Cox = ox / tox

Page 14: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 14

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v =

Page 15: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 15

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E =

Page 16: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 16

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E = Vds/L Time for carrier to cross channel:

– t =

Page 17: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 17

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field

between source and drain v = E called mobility E = Vds/L Time for carrier to cross channel:

– t = L / v

Page 18: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 18

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

dsI

Page 19: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 19

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channelds

QIt

Page 20: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 20

nMOS Linear I-V Now we know

– How much charge Qchannel is in the channel– How much time t each carrier takes to cross

channel

ox 2

2

ds

dsgs t ds

dsgs t ds

QIt

W VC V V VL

VV V V

ox = WCL

Page 21: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 21

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

dsI

Page 22: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 22

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

2dsat

ds gs t dsatVI V V V

Page 23: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 23

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain

– When Vds > Vdsat = Vgs – Vt

Now drain voltage no longer increases current

2

2

2

dsatds gs t dsat

gs t

VI V V V

V V

Page 24: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 24

nMOS I-V Summary

2

cutoff

linear

saturatio

0

2

2n

gs t

dsds gs t ds ds dsat

gs t ds dsat

V VVI V V V V V

V V V V

Shockley 1st order transistor models

Page 25: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 25

Example We will be using a 0.6 m process for your project

– From AMI Semiconductor– tox = 100 Å– = 350 cm2/V*s– Vt = 0.7 V

Plot Ids vs. Vds

– Vgs = 0, 1, 2, 3, 4, 5– Use W/L = 4/2

14

28

3.9 8.85 10350 120 /100 10ox

W W WC A VL L L

0 1 2 3 4 50

0.5

1

1.5

2

2.5

Vds

I ds (m

A)

Vgs = 5

Vgs = 4

Vgs = 3

Vgs = 2Vgs = 1

Page 26: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 26

pMOS I-V All dopings and voltages are inverted for pMOS Mobility p is determined by holes

– Typically 2-3x lower than that of electrons n

– 120 cm2/V*s in AMI 0.6 m process Thus pMOS must be wider to provide same current

– In this class, assume n / p = 2

– *** plot I-V here

Page 27: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 27

Capacitance Any two conductors separated by an insulator have

capacitance Gate to channel capacitor is very important

– Creates channel charge necessary for operation Source and drain have capacitance to body

– Across reverse-biased diodes– Called diffusion capacitance because it is

associated with source/drain diffusion

Page 28: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 28

Gate Capacitance Approximate channel as connected to source Cgs = oxWL/tox = CoxWL = CpermicronW Cpermicron is typically about 2 fF/m

n+ n+

p-type body

W

L

tox

SiO2 gate oxide(good insulator, ox = 3.90)

polysilicongate

Page 29: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 29

Diffusion Capacitance Csb, Cdb

Undesirable, called parasitic capacitance Capacitance depends on area and perimeter

– Use small diffusion nodes– Comparable to Cg

for contacted diff– ½ Cg for uncontacted– Varies with process

Page 30: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 30

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

VDDVDD

Page 31: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 31

Pass Transistors We have assumed source is grounded What if source > 0?

– e.g. pass transistor passing VDD

Vg = VDD

– If Vs > VDD-Vt, Vgs < Vt

– Hence transistor would turn itself off nMOS pass transistors pull no higher than VDD-Vtn

– Called a degraded “1”– Approach degraded value slowly (low Ids)

pMOS pass transistors pull no lower than Vtp

VDDVDD

Page 32: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 32

Pass Transistor Ckts

VDDVDD

VSS

VDD

VDD

VDD VDD VDD

VDD

Page 33: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 33

Pass Transistor Ckts

VDDVDD Vs = VDD-Vtn

VSS

Vs = |Vtp|

VDD

VDD-Vtn VDD-VtnVDD-Vtn

VDD

VDD VDD VDD

VDD

VDD-Vtn

VDD-2Vtn

Page 34: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 34

Effective Resistance Shockley models have limited value

– Not accurate enough for modern transistors– Too complicated for much hand analysis

Simplification: treat transistor as resistor– Replace Ids(Vds, Vgs) with effective resistance R

• Ids = Vds/R– R averaged across switching of digital gate

Too inaccurate to predict current at any given time– But good enough to predict RC delay

Page 35: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 35

RC Delay Model Use equivalent circuits for MOS transistors

– Ideal switch + capacitance and ON resistance– Unit nMOS has resistance R, capacitance C– Unit pMOS has resistance 2R, capacitance C

Capacitance proportional to width Resistance inversely proportional to width

kgs

dg

s

d

kCkC

kCR/k

kgs

dg

s

d

kC

kC

kC

2R/k

Page 36: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 36

RC Values Capacitance

– C = Cg = Cs = Cd = 2 fF/m of gate width– Values similar across many processes

Resistance– R 6 K*m in 0.6um process– Improves with shorter channel lengths

Unit transistors– May refer to minimum contacted device (4/2 )– Or maybe 1 m wide device– Doesn’t matter as long as you are consistent

Page 37: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 37

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

2

1A

Y 2

1

Page 38: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 38

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

Y2

1

Page 39: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 39

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

Page 40: Lecture 3: CMOS Transistor Theoryideal.csie.ncku.edu.tw/vlsi/lect3.pdf · 3: CMOS Transistor Theory Slide 35CMOS VLSI Design RC Delay Model Use equivalent circuits for MOS transistors

CMOS VLSI Design3: CMOS Transistor Theory Slide 40

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

C

CR

2C

2C

R

2

1A

Y

C

2C

C

2C

C

2C

RY

2

1

d = 6RC