Lecture 2 Ghoshal

download Lecture 2 Ghoshal

of 59

Transcript of Lecture 2 Ghoshal

  • 8/17/2019 Lecture 2 Ghoshal

    1/59

    4/6/20

    Management and remediation ofsites for extractive industries

    Subhasis GhoshalDepartment of Civil Engineering

    McGill University, Canada

    Universidad ORT Uruguay, Montevideo , Apri l 4-8, 2016 

    Organizer: Prof. Lorena Betancour, Universidad ORT Uruguay

    Pump-and-Treat Remediation

  • 8/17/2019 Lecture 2 Ghoshal

    2/59

    4/6/20

    • Wide use since 1980s – 75% of Superfund sites

    • 1990’s: ability to achieve complete aquifer restoration?

     – Slow decrease in contaminant concentrations, tailing

    and rebound

    Pump and Treat Remediation

    Technology Objectives

    • Objective of technology

     – Hydraulic containment using pumping wells (& to a lesserextent: subsurface drains, trenches and barrier walls

     – Treatment of contaminated water 

    • Prerequisites

     – thorough site characterization• Contaminant types and distribution

    • Hydrogeology

     – Source removal (excavation, pumping of NAPL)?

    • Treatment objectives – realistic goals needed

     – For high degree of clean-up: homogeneous and permeablestrata in aquifers, no NAPL contamination, non-sorbingcontaminants

  • 8/17/2019 Lecture 2 Ghoshal

    3/59

    4/6/20

    • Tailing: progressively slower rate of decline incontaminant concentrations

    • Rebound: rapid increase in contaminantconcentrations after pumping has stopped

    The Clean-up Challenge: Tailing and Rebound

  • 8/17/2019 Lecture 2 Ghoshal

    4/59

    4/6/20

    • Effect of Tailing and Rebound on Remediation

     – Longer treatment times

     – Residual concentration in excess of cleanupstandard

    • Contributing factors

     – Slow release of solutes from NAPLs

     – Slow contaminant desorption

     – Slow precipitate dissolution (for heavy metals)

     – Slow diffusion of compounds from clay layers

    and lenses

    Tailing and Rebound

    Factors contributing to tailing:Effect of mass transfer from source (sorbed phase,

     NAPL or diffusion limited zone)

  • 8/17/2019 Lecture 2 Ghoshal

    5/59

    4/6/20

    Factors contributing to tailing:

    Effect of clay layer thickness and

    Factors contributing to tailing:Effect of geological stratification

  • 8/17/2019 Lecture 2 Ghoshal

    6/59

    4/6/20

    • Hydraulic containment: to prevent further

    spreading of plume

     – Extraction wells create capture zones

    Capture Zones

    Equipotential Lines Groundwater

    Flow Lines

    PW = pumping well

    Capture Zones

    Groundwater flow

  • 8/17/2019 Lecture 2 Ghoshal

    7/59

    4/6/20

    Placement of well with respect to

     plume size

    • Optimizing Design and Operation

     – Pulsed pumping

  • 8/17/2019 Lecture 2 Ghoshal

    8/59

    4/6/20

    • Variations and Alternatives

     – Horizontal and inclined wells

    Intercepting Fractures

     Accessing Beneath Structures

    • Surfactants (SURFace ACTive agents)

    Enhancements to Pump and Treat

    CMC

    Micelle

    Surfactant concentration

    Critical Micellar Concentration (CMC)

    NAPL

    Water 

    Monomer 

  • 8/17/2019 Lecture 2 Ghoshal

    9/59

    4/6/20

    • Surfactants (SURFace ACTive agents)

    Enhancements to Pump and Treat

     Aqueous Phase

    NAPL Phase

    Surfactant Micelle

    Solubilizationrelated to Kow

    • Surfactants (SURFace ACTive agents)

    Enhancements to Pump and Treat

       C   i ,   t  o   t  a   l

    Ci, micellar 

    CMC

    Surfactant Concentration, Csurf (moles/L)

       S  o   l  u   t  e

       C  o  n  c  e  n   t  r  a   t   i  o  n   (  m  o   l  e  s   /   L   )

    Ci, aqueous

  • 8/17/2019 Lecture 2 Ghoshal

    10/59

    4/6/20

    • Soil Flushing

    Enhancements to Pump and Treat

    c k g h N l 

     ρ σ  

    ∆ = ∆

    Iron-Nanoparticles for

    groundwater remediaion

  • 8/17/2019 Lecture 2 Ghoshal

    11/59

    4/6/20

    Groundwater Contamination by

    Chlorinated Solvents

    • Trichloroethylene,perchloroethylene

    • Carcinogenic, neurotoxic

    • Restoration of groundwaterto meet drinking water

    standards have not been

    successful

    • ~1 million Kg of chlorinated

    solvents improperlydischarged into ground in

    U.S & Canada

    SolventRelease

    PollutantPlume

    Water WellSolvent

    Why Nano Fe(0)?• Very High Reactivity

     – Niche applications forreducible pollutants

    (chlorinated organics, heavy

    metals, nitrates, radioactive

    waste, PCBs)

     – Rapid in situ treatment ofgroundwater contamination

    • Low cost and commerciallyavailable

    • Toxicity?

    Chlorinatedorganics

    Heavy metals

    Core-shell structure of nanoscalezero valent iron (NZVI) particles

    Theron et al., 2008 

    Fe203

  • 8/17/2019 Lecture 2 Ghoshal

    12/59

    4/6/20

    Nanoscale Zero Valent Iron

    23

    Bioremediation vs remediation with Fe0

    24

    Roberts et al., 1996

     Arnold et al., 2005

    Reactions with Fe0

    Only Dehalococcoides - Capable ofcomplete dechlorination to ethene

    Biodegradation Reactions

    Biodegradation

    Reactions with Fe0

    Stable reaction products areacetylene, ethene, ethane

  • 8/17/2019 Lecture 2 Ghoshal

    13/59

    4/6/20

    nZVI-based

    in situ remediation

    Contaminated Plume

    Injection of nZVI-slurry

    Source

    Decontaminated Zone

    Groundwater flow direction

    nZVI and pollutantreaction

    Water table

    Fe

    Iron oxides andhydroxydes

    R Cl

    R H

    + Cl-

    + H+Direct int roduct ion of n ZVI into the environm ent 

    Contaminated Plume

    Injection of nZVI-slurry

    Contaminant Source

    Decontaminated Zone

    Groundwater flow direction

    Water table

    nZVI-based in situ remediation

    Polymer

    -nZVILimited transport of bare nZVI

  • 8/17/2019 Lecture 2 Ghoshal

    14/59

    4/6/20

    Iron Nanoparticle Aggregation &

    Effects of Polyelectrolyte Coating

    Electostatic repulsion force

    Magnetic attraction forces

    Electostatic + steric repulsion force

    Polymer Coating:CarboxymethylCellulose (CMC)

    Magnetic attraction forces

    Bare-nano Iron

    accumulationIn a sand packed

    column

    Polymer

    stabilized

    nano-iron

    distribution in

    a sand packed

    column

    Mobility enhancement:

    polymer coated nZVI

    • Causes for enhanced mobility:

     – Reduced aggregation of nZVI due to charge and stericstabilization

     – dispersed particles

     – reduced deposition and filtration of nZVI in porousmedia

  • 8/17/2019 Lecture 2 Ghoshal

    15/59

    4/6/20

    Polymer-Coated NZVI

    FeSO4  + NaBH4 + stabilizer H2O Fe + sulfate and boronic salts

    Cirtiu, Raychoudhury, Ghoshal, Moores.

    Colloids and Surfaces A: Physicochem. Eng. Aspects 390 (2011) 95– 104

    • Carboxymethyl cellulose: very efficient in colloidally stabilizing particles

    • Synthesized particle size different for the different polymers• All polyelectrolytes showed binding to the Fe(0)/FeOOH surface.

    Bottom-up synthesis of CMC-NZVI

    FeSO4  + NaBH4 + stabilizer H2O Fe + sulfate and boronic salts

    Carboxymethyl cellulose (CMC)

    stabilizer

    5 g/L CMC, 1 g/L Fe→ 5 nm avg dia.5 g/L CMC, 2 g/L Fe→ 75 nm avg dia.

    600 900 12001500 18002100 24002700 30003300 36003900

     

    asymCOO

    -

     

    symCOO

    -

     CMC-ZVI CMC

       T  r  a  n  s  m   i   t   t  a  n  c  e

       (   %   )

     Wavenumber (cm-1)

    FTIR spectrum of CMC-ZVI

    R

    CO O

    Fe Fe

    Bidentate bridginginteraction

  • 8/17/2019 Lecture 2 Ghoshal

    16/59

    4/6/20

    NZVI Transport Fundamentals

    Column Transport experiments

    Syringepump

    Inlet; Co= 70 mg/L-725 mg/L

    Outlet; C

    sampler 

    Sand size (dc)= 450µm(F3050)Particle size (dp)=5.5nm-75nm

    L=9 cm; D=1 cmFlow = 0.45 cm/minIS=0.1mM-10mM

  • 8/17/2019 Lecture 2 Ghoshal

    17/59

    4/6/20

    CMC-nZVI Transport in Packed Columns

    Pore volume =V*t/(L*n)

    n=porosity , V=velocity

    Pore volume (PV)

    0 1 2 3 4 5 6 7 8

    0 1 2 3 4 5 6 7 8

       C   /   C

       0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C0=0.725 gL-1

    Tracer KNO3

    Simulated C/C0 

    (without aggregation)

    Outlet concentration = C(changes with time t)

    L=columnlength

    Inlet concentration = Co(constant at all time t)

    CLASSICAL COLLOID DEPOSITION MECHANISMS IN

    POROUS MEDIA

    Single collector efficiency: Probability

    of collision between particle-sand

    (i) Diffusion

    (ii) Interception

    (iii) Sedimentation

    Attachment efficiency: Probability of 

    sticking on sand surface after collision

    (i) Solution chemistry

    (ii) Surface charge

    34

    Diffusion

    Interception

    Sedimentation

    Collector

    Colloid

     F  l   o w  d  i  

     r  e c  t   i   o n

    o

    cd 

    vnk    αη 

    2

    )1(3   −=

    Attachment

    efficiency Single collector

    efficiency

    k=deposition rate coefficient, n=porosity,

    v=interstitial velocity, dc=average sand size

    kC  x

    C v

     x

    C  D

    C  x   −

    ∂−

    ∂=

    ∂2

    2

    Dispersion

    coefficient

    Pore water

    velocity

    Deposition rate

    constant

    Particle diameter 

    dependent 

  • 8/17/2019 Lecture 2 Ghoshal

    18/59

    4/6/20

    Particle size (nm)

    100 200 300 400 500 600 700   S   i  n  g   l  e  c  o

       l   l  e  c   t  o  r  c  o  n   t  a  c   t  e   f   f   i  c   i  e  n  c  y   (     η

       0   )

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    aSingle collector efficiency (η0)with different particle size (dp)

    Single-Collector Contact Efficiency

    36

    CMC-nZVI deposition in granular porous media

    Collector 

      s  e   d   i  m  e  n   t  a   t   i  o  n

    Influent

    Effluent

    EffluentInfluent

    Particle-collectorattachment

    Influent PSDEffluent PSD

       C  o  n  c  e  n   t  r  a   t   i  o  n

    Particle size(dp)

       C  o  n  c  e  n   t  r  a   t   i  o  n

    Particle size(dp)

    Particle-particleattachment

    t=t0

    t=tend

    t=t0

    t=tend

    Flow path 2

  • 8/17/2019 Lecture 2 Ghoshal

    19/59

    4/6/20

    CMC-nZVI Transport:Effect of Particle Concentration

     Accounting for detachment of deposited particlesprovides reasonable fits

    Pore volume (PV)

    0 1 2 3 4 5 6 7 8

    0 1 2 3 4 5 6 7 8

       C   /   C

       0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    C0=0.07gL-1

    C0=0.2gL-1

    C0=0.725gL-1

    Fitted Curve

    b

    ε 

     ρ  depn

    i

    iidep

    S k t C k 

     x

    C v

     x

    C  D

    C  det

    1

    ,2)(

    2

    +−∂

    ∂−

    ∂=

    =

    Adhesive torque

    (Tadhesive) due to DLVO

    interaction energy

    Torque (Tapplied) due to

    hydrodynamic dragSand

    grain

    Tapplied /Tadhesive>1 suggestspossibility of detachment

    NZVI Reactivity

  • 8/17/2019 Lecture 2 Ghoshal

    20/59

  • 8/17/2019 Lecture 2 Ghoshal

    21/59

    4/6/20

    NZVI Reactivity to TCE

    Reactions under Iron Excess Conditions

    Liu et al., 2005. Environ.Sci. Technol.

    42

    Solutions:

    Surface functionalization

    Fe0

    S2-

    Carbon supportDoping with

    metal (Pd)

    Addition of

    inorganic ions

    Oxide passivation

    layer

    Fe0

    • NZVI reacts with water andoxygen, forms oxide layer:

    Fe3O4/FeOOH

    • Thick oxide layers hinderselectron transport

    The Problem:

    Surface passivation

    Fe(0) + 2H2O→ Fe(OH)2 + H2

  • 8/17/2019 Lecture 2 Ghoshal

    22/59

    4/6/20

    43

    NZVI reactivity

    Bimetallic

    nanoparticles

    Many folds

    increase

    in reactivity with

    Pd,

    but……..Pdcontributes

    to toxicity

    Yan et al. 2012

    Yan et al 2010

    Oxide passivationlayer 

    Aged, passivated nZVI

    TCE degradation kinetics

    Initial TCE Concentration 30mg/L

    NZVI concentration 2.0 g/L

    NZVI-Pd 0.1 g/L (0.5% wt/wt of Pd) 44

    Time (hr)

    0 2 4 6 8 10 12 14 16

       C   /   C   0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    No NZVI

    NZVI only

    NZVI-Pd

  • 8/17/2019 Lecture 2 Ghoshal

    23/59

    4/6/20

    Sulfidation of NZVI

    Rajajayavel and Ghoshal, Water Research, 2015, In pressTime (days)

    0 5 10 15 20 25 30

       H  y   d  r  o  g  e  n   (  m   M   )

    0

    20

    40

    60

    80

    100

    120

    bare NZVI

    Sulfidated NZVI

    33 % less loss ofelectrons to water:

    Sulfidated-NZVIthus more long-

    lasting

    TCE degradation kinetics with sulfide functionalized NZVI

    Initial TCE Concentration 30mg/L

    NZVI concentration 2.0 g/L

    NZVI-Pd 0.1 g/L (0.5% wt/wt of Pd)

    Time (hr)

    0 2 4 6 8 10 12 14 16

       C   /   C   0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    No NZVI

    NZVI only

    0.7 mM Sulfide

    1.0 mM Sulfide1.6 mM Sulfide

    2.4 mM Sulfide

    3.1 mM SulfideNZVI-Pd

    • k obs (h-1) for sulfide

    amended NZVI > k obs forbare NZVI by up to ~40times.

    • TCE is primarily degraded toethene and acetylene.

    • Coating NZVI withcarboxymethyl cellulose(polyelectrolyte) results inidentical reactivity as bareNZVI with sulfide

    46

    Rajajayavel and Ghoshal, Water Research, 2015, 78:144-153

  • 8/17/2019 Lecture 2 Ghoshal

    24/59

    4/6/20

    Case Studies

    48

    Emulsified NZVI

    Geosyntec consultants, NASA

    • NZVI particles emplaced within asurfactant-stabilized, biodegradable, water-in-oil emulsion.

    • Oil membrane is hydrophobic and misciblewith DNAPL.

    • Biodegradation enhanced by vegetable oiland surfactant components of EZVI.

    Brooks, 2000

  • 8/17/2019 Lecture 2 Ghoshal

    25/59

  • 8/17/2019 Lecture 2 Ghoshal

    26/59

    4/6/20

    TCE Contaminated Site

    - NASA Rocket Launching Pad

  • 8/17/2019 Lecture 2 Ghoshal

    27/59

    4/6/20

    Case study – Emulsified NZVI

    53Pre-Demonstration (March 2002) Post-Demonstration (Nov 2002)

    EZVI treatment: TCE Degradation Products

  • 8/17/2019 Lecture 2 Ghoshal

    28/59

    4/6/20

    Theoretical Cost of Treatment using NZVI

    ForAcetylene, n=4Ethene, n=6Ethane, n=8

    Minimum: 4e- or 2Fe0 / TCEor: 0.85:1 (by mass)

    Assuming $50/Kg Fe0:$44/Kg TCE (acetylene)

    $66/Kg TCE (Ethene)$88/Kg TCE (Ethane)

    Fe0 delivery to all TCE molecules?

    Permeable Reactive Barriers

  • 8/17/2019 Lecture 2 Ghoshal

    29/59

    4/6/20

    Permeable Reactive Fe(0) Barrier 

    Permeable Reactive Barrier Walls

    • In-situ remediation for chlorinatedhydrocarbons & heavy metals

    • Usually contain iron or other zero-valentmetals

    • Hydraulic retention time is key

  • 8/17/2019 Lecture 2 Ghoshal

    30/59

    4/6/20

    Reactive Barrier Walls

    1) funnel and gate

    2) continuous trench

    Case Study

    • Elizabeth City, NC

    • Contamination of groundwater with Cr(VI) and TCE(overlapping plumes)

     – TCE (20 000 ug/L), cDCE and VC: degreasing operations

     – Cr (10 mg/L in groundwater, 14,500 mg/Kg in soil):electroplating operations

    • Permeable reactive barrier

     – Continuous wall configuration: 46 mX 7.3m X 0.6m – granular iron: reactive medium

  • 8/17/2019 Lecture 2 Ghoshal

    31/59

    4/6/20

  • 8/17/2019 Lecture 2 Ghoshal

    32/59

    4/6/20

  • 8/17/2019 Lecture 2 Ghoshal

    33/59

    4/6/20

    Cr(VI) reduction by Fe0

    From Gould (1982)

    A = surface area of zero-valent Fe (cm2/L)

    k = 5.45X10-5 L/cm2.min

  • 8/17/2019 Lecture 2 Ghoshal

    34/59

    4/6/20

    TCE transformation

  • 8/17/2019 Lecture 2 Ghoshal

    35/59

    4/6/20

  • 8/17/2019 Lecture 2 Ghoshal

    36/59

    4/6/20

  • 8/17/2019 Lecture 2 Ghoshal

    37/59

  • 8/17/2019 Lecture 2 Ghoshal

    38/59

    4/6/20

    PRB Case Study

    • Cost Comparison with Pump and Treat

    Reactive Wall Pump and Treat

    Installation $500 000 $500 000

    Monitoring $32 000/yr $32 000/yr  

    Maintenance $0 $200 000/yr  

    Equipment $0 $500 000/20 yrs

    Savings = $ 4.5 million/20 yrs

  • 8/17/2019 Lecture 2 Ghoshal

    39/59

    4/6/20

    Bioremediation

    • Bioremediation: Engineered or natural process inwhich biological reactions break up or transformpollutant compounds, thereby remedying oreliminating environmental contamination

    • Mineralization: Conversion of an organic moleculeinto its inorganic constituents (e.g., CO2, NO3

    -, SO42-,

    PO43-)

    • Biodegradation: A subset of biotransformation

    which causes simplification of an organic compoundsstructure by breaking intermolecular bonds

    Bioremediation

  • 8/17/2019 Lecture 2 Ghoshal

    40/59

    4/6/20

    • To obtain energy for growth and maintenance

     – Electron transfer (redox) reactions provide energyand result in biodegradation

     – Microbially-mediated redox reactions involve

    • electron donor (usually: organic matter /organicpollutant)

    • electron acceptor (usually: oxygen, nitrate,

    sulfate, CO2)• As a source of C for building cell materials

    Why do microbes degrade organiccompounds?

    80

    Fundamentals of Bioremediation

  • 8/17/2019 Lecture 2 Ghoshal

    41/59

    4/6/20

    • BTEX, PAHs – aerobic & anaerobic biodegradation

    • Chlorinated hydrocarbons

     – Aerobic biodegradation (pollutant acts as electrondonor and O2 acts as electron acceptor) – DCE

     – reductive dehalogenation (pollutant acts aselectron acceptor, occurs under sulfate reducingand methanogenic conditions) – PCE,TCE, DCE,TCA

     – Cometabolic biodegradation (e.g., toluene:primary substrate, TCE cometabolic substrate)

    Biodegradation of Common Pollutants

     – Near ground surface, O2 available in abundance

     – If BOD of contaminant zone >> dissolved O2, thenonly anaerobic biodegradation feasible

     – Deep in subsurface, no O2 but naturally abundantnitrate, sulfate to sustain anaerobic biodegradation

    Where do electron acceptors come from?

  • 8/17/2019 Lecture 2 Ghoshal

    42/59

    4/6/20

    Volatilization

    Aerobic Unsaturated Zone

    Oxygen Exchange

    Aerobicuncontaminatedgroundwater 

    Dissolution

    Aerobic Processes 

    Anaerobic core 

    Mixing, Dilution

    Advection

  • 8/17/2019 Lecture 2 Ghoshal

    43/59

    4/6/20

    86

     Anaerobic degradation of chlorinated

    organics by Dehalococcoides .,These are the only group of microbes that are capable ofcomplete dechlorination of chlorinated solvents.

    Dehalococcoides sp.,http://www.beem.utoronto.ca/research/67

    Dhc ., are not ubiquitous and often are present in low

    numbers. (Hendrickson et al., 2002)

    Strict anaerobes that require anoxia and reducing

    conditions for growth.

    Difficult to grow as pure culture.

    Enriched with mixed culture consortia of bacteria

    (Methanogens, Acteogens, Sporumosa...)

  • 8/17/2019 Lecture 2 Ghoshal

    44/59

    4/6/20

    87

    Dehalococcoides work in consortium with other

    bacteria

    Carbon source

    Electron donor  pH Temperature nutrient availability

    Growth Factors

    88

    SIREM KB-1®

     A Case study  KB-1 ®  is the commercial name for mixed culture

    dechlorinating bacteria.

    It is the most widely used bio-augmentationculture in the world.

    Ref: http://www.siremlab.com/products/kb-1

    Site history

    Portland, Oregon

    TCE released during 1980’s TCE and cDCE ~ 592 mg/L and 92 mg/L 50 to 110 feet below ground surface

  • 8/17/2019 Lecture 2 Ghoshal

    45/59

    4/6/20

    89

    KB-1® A Case study The full scale implementation consisted of a 150 footlong bio-barrier amended with an electron donorand KB-1®.

    Approximately 200 injection points were used toinject 270,000 kilograms of electron donor and 2,000liters (L) of KB-1®.

    The site was continuously monitored for itperformance.

    “TCE concentrations were below federal MCLs (5 µg/L) in 6 months”

    TCE dechlorination products (cDCE and VC) were generated initially,

    followed by a rapid decline with observed increases in ethene.

    http://www.sirem-lab.com/images/PDF/case-study-maulfoster.pdf 

    • Other than electron acceptors, N, P, what otherconditions are required?

     – pH: 6-8, adequate buffering capacity

     – Temperature: subsurface ground temperatureusually ideal but if less than 5oC, usually lowbiodegradation rates

     – Moisture > 40%

     – Absence of toxic agents, e.g., high conc. of heavymetals

    Bioremediation Requirements

  • 8/17/2019 Lecture 2 Ghoshal

    46/59

    4/6/20

    Bacterial Metabolic Genes

    GENEPLASMID/

    CHROMOSOMEENCODED

    POLLUTANT   STRAIN

    a l k    Plasmid (OCT)  alkanes

    (C6-C10)  Ps e u d om o n a s pu t id a 

    b p h    Chromosome PCBs  A l ca l i g en es 

    e u tr o p h u s  H850

    n a h    Plasmid (pKA1)

    naphthalene,

    anthracene,

    phenanthrene

    Pse u d om o n as 

    f l u or esce n s  5R 

    p h l    Chromosome phenol   A l ca l i g en es e u t r op h u s  JMP134

    x y l    Plasmid (TOL)  xylene,

    toluene

    Ps e u d om on as p u t id a 

    mt-2

    Biodegradation Kinetics

    Cell growth rate:   X dt 

    dX  µ =

    Monod’s Kinetics:C  K 

    C m+

    = µ 

    Substrate degradation kinetics:

    ( )C  K Y 

    CX 

    dt 

    dC  m

    +

    −=

    X = cell concentration (mg cells/L) = specific growth rate (day-1)

    Ks = half saturation constant (mg/L) m = maximum specific growth rate (day-1)

    C = substrate concentration (mg/L) Y = yield coefficient (mg cells/mg substrate)

  • 8/17/2019 Lecture 2 Ghoshal

    47/59

    4/6/20

    • Permeable Biobarriers

    In-Situ Bioremediation

    Bioavailability

    water

    NAPL

    solid

    Contaminated soil matrix

  • 8/17/2019 Lecture 2 Ghoshal

    48/59

    4/6/20

    • Can contaminants sorbed on to soil or present inNAPLs be biodegraded?

     – Conventional theory: only dissolvedcontaminants are degraded by bacteria -----‘bioavailability’

     – Once dissolved phase contaminants are depletedby biodegradation, sorbed or NAPL contaminantswill desorb/dissolve in response to the decrease inaqueous phase concentration and thereafter

    biodegrade

    Bioremediation

    Limited Bioavailability

    • Low aqueous solubility of HOCs

    • Entrapment in micropores

    • Strong binding (sequestration) to soil organic matterwith aging

    • conventional analytical techniques inadequate forpredicting bioavailability

  • 8/17/2019 Lecture 2 Ghoshal

    49/59

    4/6/20

    Limited Bioavailability

    • Desorption/dissolution rates may influencebiodegradation rates

    • Overall biodegradation rates can be influenced byrates of desorption/dissolution or intrinsic rate ofmicrobial uptake

    • Desorption/dissolution is often found to be the ratecontrolling phenomena

    Mass Transfer and Biodegradation Processes at the

    Particle Scale

  • 8/17/2019 Lecture 2 Ghoshal

    50/59

    4/6/20

    Identifying Rate Controlling Phenomena

    Bi >1 Bi 1φ>1

    Diffusion control Biokinetic control Dissolution control

    Da

  • 8/17/2019 Lecture 2 Ghoshal

    51/59

    4/6/20

    • Enhanced Pump and Treat

    In-Situ Bioremediation

    • Bioventing

    In-Situ Bioremediation

  • 8/17/2019 Lecture 2 Ghoshal

    52/59

    4/6/20

    • Air Sparging

    In-Situ Bioremediation

    • Intrinsic Bioremediation and Natural Attenuation

    In-Situ Bioremediation

  • 8/17/2019 Lecture 2 Ghoshal

    53/59

    4/6/20

    How do you prove that bioremediation isoccurring in-situ?

    • How to distinguish between biotic and abioticprocesses?

    • Difficulty of performing mass balances in the field

    How do you prove that bioremediation is

    occurring in-situ?

    Direct measurements

     – Increase in number of bacteria (especially pollutantdegrading bacteria)

     – Compare bacterial adaptation before and duringbioremediation

     – Decrease in electron acceptor concentrations

     – Formation of by-products

     – Ratio of biodegradable to non-biodegradablecomponents

  • 8/17/2019 Lecture 2 Ghoshal

    54/59

    4/6/20

    How do you prove that bioremediation isoccurring in-situ?

    Experiments in the field

     – Stimulating bacteria within subsites to test forincreased contaminant losses

     – Monitoring conservative tracers to assess abioticlosses

     – Radio-labelling contaminants to determine the fateof carbon

    How do you prove that bioremediation is

    occurring in-situ?

    Modelling experiments

     – To represent abiotic loss mechanisms

     – To estimate biodegradation rate

     – Compared to actual losses in the field

    Need more than one piece of evidence needed toprove biodegradation in the field

  • 8/17/2019 Lecture 2 Ghoshal

    55/59

  • 8/17/2019 Lecture 2 Ghoshal

    56/59

    4/6/20

    Ex-situ Bioremediation

    • Slurry phase treatment (Bioreactors) – Rate-limiting step?

    • Rate of desorption/dissolution process

    • Rate of microbial uptake (biodegradationkinetics)

    ( )t eqdC A

     K C C dt V 

    = −

    water

    NAPL

    solid

    Ex-situ Bioremediation

    • Landfarming

     – Aeration and mixing

     – Microbial seed

  • 8/17/2019 Lecture 2 Ghoshal

    57/59

    4/6/20

    Ex-situ Bioremediation

    • Biopiles

     – above-ground, engineered composting systemsused for the treatment of contaminated soils

    impermeable base

    bermberm

    contaminated

    soil

    protective

    membrane

    leachate

    collection

    pipe

    monitoring

    devices   nutrient and

    water addition

    water knockout tank

    blower 

    Biopiles• Soil preparation includes

    • screening, crushing, mixing, adding bulking agents

    • pH adjustment

    • enhancement of indigenous microbes

    • Design elements

     – Protective membrane

     – Impermeable base

     – Aeration + air filtration

     – Moisture + nutrient addition

     – Leachate collection system

     – Temperature

     – Monitoring

  • 8/17/2019 Lecture 2 Ghoshal

    58/59

    4/6/20

    Biopiles under Construction

    Impermeable Liner 

  • 8/17/2019 Lecture 2 Ghoshal

    59/59

    4/6/20

    • Applicability

     – Mainly for petroleum products

     – Lighter, volatile hydrocarbons removed throughaeration

     – Medium to heavy hydrocarbons biodegraded

     – Less effective for chlorinated hydrocarbons thatare degraded anaerobically

    Biopiles