Lecture 2

10

Click here to load reader

description

EE Lec 2

Transcript of Lecture 2

  • NUMERICAL ANALYSIS

    Lecture -2

    Muhammad Rafiq

    Assistant Professor University of Central Punjab

    Lahore Pakistan

  • ERROR ANALYSIS

    ERROR

    The difference in exact and approximate values is error.

    Suppose exact value of a number be = x

    Approximate exact value of a number be = x

    Error = x- x

    Absolute error=|x- x|

    Relative error=A.E/|x|

    =|x- x|/|x|

    Percentage relative error=R.E100%

  • ERROR IN ADDITION

    Suppose exact value of a number be= x1

    Suppose exact value of another number be= x2

    Suppose approximate value of a number be= x1

    Suppose approximate value of another number be= x2

    Error in first number = e1=x1-x1

    Error in first number=e2=x2-x2

    Let Z be the sum of two numbers=Z=x1+x2

    Let Z be the sum of approximate values=Z=x1 +x2

    Error=ez=Z-Z

    = (x1+x2) - (x1+x2)

  • = x1+x2- x1-x2

    =(x1-x1)+(x2-x2)

    ez=e1+e2

    Absolute error=|ez|=|e1+e2||e1|+|e2|

    And |ez||e1|+|e2|

    ERROR IN SUBTRACTION

    Suppose exact value of a number be= x1

    Suppose exact value of another number be= x2

    Suppose approximate value of a number be= x1

    Suppose approximate value of another number be= x2

  • Error in first number = e1=x1-x1

    Error in first number=e2=x2-x2

    Let Z be the difference of two numbers=Z=x1-x2

    Let Z be the difference of approximate values=Z=x1-x2

    Error=ez=Z-Z

    = (x1-x2 )- (x1-x2)

    = x1-x2- x1+x2

    =(x1-x1)-(x2-x2)

    ez=e1-e2

    Absolute error=|ez|=|e1-e2||e1|+|e2|

    And |ez| |e1|+|e2|

  • Thus for n numbers eZ = e1 e2 e3 en

    |ez| |e1|+|e2|+|e3|++|en|

    Note:

    If a number is approximated to n-decimal places, then absolute

    error in it is given by

    A.E 1/2 10-n

    For Example =1.73 e=1/2 10-2

    =1.7320 e=1/2 10-4

  • EXAMPLE 1

    If numbers in 0.3062-0.25026+2.51342 are rounded. Estimate

    the maximum absolute error and relative error. Find also the

    range in which true answers lies.

    Solution:

    Let x1=0.3062 e1=1/210-4

    x2=0.25026 e2=1/210-5

    x3=2.51342 e3=1/210-5

    Let Z=x1-x2+x3

    =0.3062-0.25026+2.51342

    = 2.56936

  • Absolute error 1/210-4+1/210-5+1/210-5

    1/210-5(10+1+1)

    1/210-5(12)

    610-5

    0.610-4

    Maximum Absolute error=0.610-4

    Relative error=A.E/|Z|

    =0.610-4

    /2.56936

    =2.335210-5

    The range in which true answer lies

    Z-A.E Z Z+A.E

  • 2.56936-0.610-4 Z 2.56936+0.610-4

    2.56930 Z 2.56942.

    (Correct to 3d.p)

    EXAMPLE 2

    The values of x1 and x2 are estimated as x1=4.57+e1 and

    x2=8.84+e2 where |e1|

  • Exercise

    Q # 1

    If numbers in 5.2163+1.35202-1.41265+2.14169 are rounded.

    Estimate the maximum absolute error and relative error. Find

    also the range in which true answers lies.

    Q # 2

    If numbers in 3.123-2.5169+2.234-2.01267+2.1006 are

    rounded. Estimate the maximum absolute error and relative

    error. Find also the range in which true answers lies.