Lecture 16 Bode Plots 1/2 - BioMechatronics

45
1/44 MECE 3350U Control Systems Lecture 16 Bode Plots 1/2 MECE 3350 - C. Rossa 1 / 44 Lecture 16

Transcript of Lecture 16 Bode Plots 1/2 - BioMechatronics

Page 1: Lecture 16 Bode Plots 1/2 - BioMechatronics

1/44

MECE 3350UControl Systems

Lecture 16Bode Plots 1/2

MECE 3350 - C. Rossa 1 / 44 Lecture 16

Page 2: Lecture 16 Bode Plots 1/2 - BioMechatronics

2/44

Videos in this lecture

Lecture: https://youtu.be/HZH9mFtfgnI

Exercise 93: https://youtu.be/-OgoGrVeqHQ

Exercise 94: https://youtu.be/ShypfZHBPTA

Exercise 95: https://youtu.be/9fz6evCg4iw

Exercise 96: https://youtu.be/iYiK-mTD65E

Exercise 97: https://youtu.be/7HpM6zzBzcs

Exercise 98: https://youtu.be/_Fgnzzq6_3Q

Exercise 99: https://youtu.be/ijSaFSJdhiI

MECE 3350 - C. Rossa 2 / 44 Lecture 16

Page 3: Lecture 16 Bode Plots 1/2 - BioMechatronics

3/44

Outline of Lecture 16

By the end of today’s lecture you should be able to

• Understand the concept of frequency response

• Determine the magnitude of a transfer function

• Determine the phase of a transfer function

• Represent magnitude and phase in a Bode plot

MECE 3350 - C. Rossa 3 / 44 Lecture 16

Page 4: Lecture 16 Bode Plots 1/2 - BioMechatronics

4/44

Applications

The response of a unknown dynamic system to a sinusoidal excitation ofvariable frequency was measured using an oscilloscope.

-80

-70

-60

-50

-40

Mag

nitu

de (

dB)

10-4 10-2 100 102 104

Frequency (rad/s)

What can we infer about the system ?

MECE 3350 - C. Rossa 4 / 44 Lecture 16

Page 5: Lecture 16 Bode Plots 1/2 - BioMechatronics

5/44

Applications

An object free to vibrate tends to do so at a specific rate called the object’s orresonant frequency.

https://goo.gl/sv2nPQ

How can we identify the resonance frequency of a system?

MECE 3350 - C. Rossa 5 / 44 Lecture 16

Page 6: Lecture 16 Bode Plots 1/2 - BioMechatronics

6/44

Frequency response

Industrial design of control system is accomplished using frequency-responsemethods more often that any other.

Advantages:

→ Raw measurements of the output are sufficient for design

→ Simple to compute

→ No need to know the dynamic model of the system

MECE 3350 - C. Rossa 6 / 44 Lecture 16

Page 7: Lecture 16 Bode Plots 1/2 - BioMechatronics

7/44

Frequency responseFrequency response: The steady-state response of the system to a sinusoidalinput signal.

Consider a system described by

Y (s)U(s) = G(s) (1)

where the input u(t) is a sine wave with an amplitude A:

u(t) = A sin(ω0t) → U(s) = A ω0

s2 + ω20

(2)

With zero initial conditions, we have

Y (s) = G(s)A ω0

s2 + ω20

(3)

MECE 3350 - C. Rossa 7 / 44 Lecture 16

Page 8: Lecture 16 Bode Plots 1/2 - BioMechatronics

8/44

Frequency response

Y (s) = G(s)A ω0

s2 + ω20

(4)

Using partial-fraction expansion, the solution takes the form of

Y (s) = α1

s − p1+ α2

s − p2+ . . .+ αn

s − pn+ α0

s + jω0+ α∗0

s − jω0(5)

where α∗0 is the complex conjugate of α0.

The time response is

y(t) = α1ep1t + α2ep2t + . . .+ αnepnt + 2|α0| sin(ω0t + φ) (6)

with

φ = tan−1(=(α0)<(α0)

)(7)

MECE 3350 - C. Rossa 8 / 44 Lecture 16

Page 9: Lecture 16 Bode Plots 1/2 - BioMechatronics

9/44

Frequency response

y(t) = α1ep1t + α2ep2t + . . .+ αnepnt + 2|α0| sin(ω0t + φ) (8)

Provided that pi < 0 ∀ i , the exponential terms die out eventually and thesteady-state response y(t →∞) is

y(t) = 2|α0| sin(ω0t + φ) (9)

which can be expressed as

y(t) = AM sin(ω0t + φ) (10)

where

M = |G(jω0)| = |G(s)|s=jω0 =√

[<G(jω0)]2 + [=G(jω0)]2

φ = tan−1(=(G(jω0))<(G(jω0))

)= ∠G(jω0)

MECE 3350 - C. Rossa 9 / 44 Lecture 16

Page 10: Lecture 16 Bode Plots 1/2 - BioMechatronics

10/44

Frequency response

G(jω0) = R(ω0) + jX(ω0)

M = |G(s)| =√

R(ω0)2 + X(ω0)2

∠G(jω0) = tan−1(

X(ω0)R(ω0)

)Note that in the above, s = jω rather than s = σ + jω. Why?

Back to the temporal response, what can we conclude?

y(t) = AM sin(ω0t + φ)

0 5-0.1

0

0.2

MECE 3350 - C. Rossa 10 / 44 Lecture 16

Page 11: Lecture 16 Bode Plots 1/2 - BioMechatronics

11/44

Example

Consider x(t) = sin(0.5t). What is y(t)?

y(t) = 2 sin(0.5t) +ˆ

sin(0.5t)dt

y(t) = 2 sin(0.5t)− 2 cos(0.5t)

Trigonometric identity: a sin x + b cos x =√

a2 + b2 sin(x + tan−1 b/a)

y(t) = 2√2 sin(0.5t − 0.785)

MECE 3350 - C. Rossa 11 / 44 Lecture 16

Page 12: Lecture 16 Bode Plots 1/2 - BioMechatronics

12/44

ExampleWhat is the magnitude of Y (s)?

Y (s) =(2 + 1

s

)X(s)

ω = 0.5 rad/s.

|G(s)| =(2 + 1

0.5j

)=(2 + 1

0.5j ×jj

)|G(s)| = |2− 2j|

|G(s)| =√

22 + (−2)2 = 2√2

∠G(s) = tan−1(−2/2) = 0.785 (rad)

MECE 3350 - C. Rossa 12 / 44 Lecture 16

Page 13: Lecture 16 Bode Plots 1/2 - BioMechatronics

13/44

Frequency response

G(s) = 2 + 1s → G(jω) = 2− 1

ωj

MECE 3350 - C. Rossa 13 / 44 Lecture 16

Page 14: Lecture 16 Bode Plots 1/2 - BioMechatronics

14/44

Magnitude and phase plots

Recall that G(jω) = 2 + 1ω

j.

We can plot the magnitude and gain for any given frequency range.

0

150

0 2 4 6 8 10

frequency [rad/s]

0

-90

MECE 3350 - C. Rossa 14 / 44 Lecture 16

Page 15: Lecture 16 Bode Plots 1/2 - BioMechatronics

15/44

Magnitude and phase plots

The horizontal axis is typically logarithmic

The horizontal axis shows log10(ω)

0

150

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

0

-90

MECE 3350 - C. Rossa 15 / 44 Lecture 16

Page 16: Lecture 16 Bode Plots 1/2 - BioMechatronics

16/44

Bode plot

The magnitude is expressed in Decibels

The magnitude is shown as 20 log10 |G(jω)|. This is called the "gain".

0

40

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

0

-90

9

MECE 3350 - C. Rossa 16 / 44 Lecture 16

Page 17: Lecture 16 Bode Plots 1/2 - BioMechatronics

17/44

Gain and phase

Given a transfer function

G(s) = k∏n

i=1(s + zi )∏mi=1(s + pi )

(11)

The gain is

|G(jω)| = 20 log[

k∏n

i=1(jω + zi )∏mi=1(jω + pi )

](12)

Since log(a × b) = log(a) + log(b), we can rewrite the gain as

[G(jω)| = 20 log(k) +n∑

i=1

[20 log(jω + zi )] +m∑

i=1

[20 log 1

(jω + pi )

](13)

Thus, if we know the Bode plot of basic functions, we can sketch the Bodediagram of G(s).

MECE 3350 - C. Rossa 17 / 44 Lecture 16

Page 18: Lecture 16 Bode Plots 1/2 - BioMechatronics

18/44

Gain and phaseGiven a transfer function

G(s) = k∏n

i=1(s + zi )∏mi=1(s + pi )

(14)

The phase is

∠[G(jω)] = φ = tan−1[=[G(jω)]<[G(jω)]

](15)

φ = ∠(k) +n∑

i=1

[∠(jω + zi )] +m∑

i=1

[∠

1jω + pi

](16)

Thus, if we know the Bode plot of basic functions, we can sketch the Bodediagram of G(s).

MECE 3350 - C. Rossa 18 / 44 Lecture 16

Page 19: Lecture 16 Bode Plots 1/2 - BioMechatronics

19/44

Bode plot building blocks

Constant gain G(s) = k

|G(ω)| = 20 log |k| ∀ ω

φ(ω) = tan−1( 0

k

)= 0 ∀ ω

The gain curve is a horizontal line on the Bode plot.

If k < 0, the magnitude remains 20 log |k| and the phase becomes −180◦.

MECE 3350 - C. Rossa 19 / 44 Lecture 16

Page 20: Lecture 16 Bode Plots 1/2 - BioMechatronics

20/44

Bode plot building blocksPole at the origin G(s) = 1

s

|G(ω)| = 20 log∣∣∣∣ 1jω∣∣∣∣ = 20 log(1)− 20 logω = −20 logω

φ(ω) = tan−1(−1/ω

c

)c→0

= −90◦

-20

0

40

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

-90

MECE 3350 - C. Rossa 20 / 44 Lecture 16

Page 21: Lecture 16 Bode Plots 1/2 - BioMechatronics

21/44

Bode plot building blocks

Zero at the origin G(s) = s

|G(ω)| = 20 log |jω| = 20 logω

φ(ω) = tan−1(ω

c

)c→0

= 90◦

-40

0

20

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

90

MECE 3350 - C. Rossa 21 / 44 Lecture 16

Page 22: Lecture 16 Bode Plots 1/2 - BioMechatronics

22/44

Bode plot building blocks

Multiple zeros or poles at the origin G(s) = sn, n ≥ 0 or n ≤ 0

|G(ω)| = 20 log |(jω)n | = n × 20 logω

φ(ω) = tan−1(ω

c

)c→0

= n × 90◦

-100

0

100

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

0

180

-180

MECE 3350 - C. Rossa 22 / 44 Lecture 16

Page 23: Lecture 16 Bode Plots 1/2 - BioMechatronics

23/44

Exercise 93

Sketch the Bode diagram for the function G(s) = 10s2

-20

0

60

-2 -1.5 -1 -0.5 0 0.5 1

frequency [rad/s]

90

MECE 3350 - C. Rossa 23 / 44 Lecture 16

Page 24: Lecture 16 Bode Plots 1/2 - BioMechatronics

24/44

Bode plot building blocks

Poles on the real axis G(s) = 1s

ω0+1 , G(jω) = 1

j ωω0

+1

The magnitude of G(s) is

|G(jω)| =∣∣∣∣ 1j ω

ω0+ 1

∣∣∣∣ =∣∣∣∣ 1j ω

ω0+ 1 ×

−j ωω0

+ 1−j ω

ω0+ 1

∣∣∣∣ (17)

|G(jω)| =

∣∣∣∣∣ 1(ωω0

)2 + 1− j

ωω0(

ωω0

)2 + 1

∣∣∣∣∣ =

√√√√( 1(ωω0

)2 + 1

)2

+

(− ω

ω0(ωω0

)2 + 1

)2

(18)

|G(jω)| =

√√√√√ (ωω0

)2 + 1[(ωω0

)2 + 1]2 =

√1

ω2

ω20

+ 1

MECE 3350 - C. Rossa 24 / 44 Lecture 16

Page 25: Lecture 16 Bode Plots 1/2 - BioMechatronics

25/44

Bode plot building blocks

Poles on the real axis G(s) = 1s

ω0+1 , G(jω) = 1

j ωω0

+1

|G(jω)| =√

1ω2

ω20

+ 1

In Decibels, the gain is

|G(jω)|dB = 20 log√

1ω2

ω20

+ 1= 20 log

(ω2

ω20

+ 1)− 1

2

= −20 log√ω2

ω20

+ 1

From Equation (18), the phase φ = tan−1 =/< is

φ = tan−1

−ω

ω0(ω

ω0

)2+1

1(ω

ω0

)2+1

= tan−1(− ω

ω0

)

MECE 3350 - C. Rossa 25 / 44 Lecture 16

Page 26: Lecture 16 Bode Plots 1/2 - BioMechatronics

26/44

Bode plot building blocks

|G(jω)|dB = −20 log√ω2

ω20

+ 1 φ = tan−1(− ω

ω0

)Case 1: ω << ω0. Thus ω2/ω2

n + 1 ≈ 1

→ The gain is −20 log(1) = 0 dB

→ The phase is tan−1(0) = 0◦

Case 2: ω = ω0→ The gain is −20 log(

√2) = −3 dB

→ The phase is tan−1(−1) = −45◦

Case 3: ω >> ω0, ∴ (ω/ω0)2 >> 1→ The gain is −20 log

(√(ω/ω0)2

)dB

→ The phase is tan−1(∞) = −90◦

MECE 3350 - C. Rossa 26 / 44 Lecture 16

0

frequency [rad/s]

-90

-45

0

dB

Page 27: Lecture 16 Bode Plots 1/2 - BioMechatronics

27/44

Exercise 94

Sketch the Bode diagram for the function G(s) = 1s+0.1

0

frequency [rad/s]

-90

-45

0

MECE 3350 - C. Rossa 27 / 44 Lecture 16

Page 28: Lecture 16 Bode Plots 1/2 - BioMechatronics

28/44

Bode plot building blocks

Zeros on the real axis G(s) = sω0

+ 1, G(jω) = 1 + j ωω0

The gain is

|G(jω)| = 20 log√(

ω

ω0

)2+ 1 (19)

Note that the above is equal the negative gain of a pole on the real axis.

The phase is

φ = tan−1(ω

ω0

)(20)

Recall that the phase for a real pole was tan−1 (− ωω0

)The real zero is the negative of a real pole on the Bode plot

MECE 3350 - C. Rossa 28 / 44 Lecture 16

Page 29: Lecture 16 Bode Plots 1/2 - BioMechatronics

29/44

Bode plot building blocks

H(s) = 1s+5 , G(s) = s + 5,

-50

0

50M

agni

tude

(dB

)

10-2 10-1 100 101 102

-90

-45

0

45

90

Pha

se (

deg)

Frequency (rad/s)

MECE 3350 - C. Rossa 29 / 44 Lecture 16

Page 30: Lecture 16 Bode Plots 1/2 - BioMechatronics

30/44

Exercise 95

A tendon-operated robotic hand can be implemented using a pneumaticactuator. The actuator can be represented by

G(s) = 1000(s + 100)(s + 10) (21)

Plot the frequency response of G(jω). Calculate the magnitude in dB of G(jω)at ω = 10 rad/s ω = 200 rad/s.

MECE 3350 - C. Rossa 30 / 44 Lecture 16

Page 31: Lecture 16 Bode Plots 1/2 - BioMechatronics

31/44

Exercise 95 - continued

G(s) = 1000(s + 100)(s + 10) (22)

MECE 3350 - C. Rossa 31 / 44 Lecture 16

Page 32: Lecture 16 Bode Plots 1/2 - BioMechatronics

32/44

Exercise 95 - continued

G(s) = 1000(s + 100)(s + 10) (23)

MECE 3350 - C. Rossa 32 / 44 Lecture 16

Page 33: Lecture 16 Bode Plots 1/2 - BioMechatronics

33/44

Exercise 96

Plot the Bode magnitude and phase for the system with the transfer function

G(s) = 2000(s + 0.5)s(s + 5)(s + 50)

Procedure

Identify the components of the transfer function for which you know the Bodeplot. Draw the Bode plot for each component, then add them up to find theBode plot of G(s).

MECE 3350 - C. Rossa 33 / 44 Lecture 16

Page 34: Lecture 16 Bode Plots 1/2 - BioMechatronics

34/44

Exercise 96 - continued

G(s) = 2000(s + 0.5)s(s + 5)(s + 50)

→ Constant:

→ Pole at the origin:

→ Real zero:

→ Real pole:

The gain is

G = 20 log[

2000(jω + 0.5)jω(jω + 5)(jω + 50)

]Which can be expressed as

MECE 3350 - C. Rossa 34 / 44 Lecture 16

Page 35: Lecture 16 Bode Plots 1/2 - BioMechatronics

35/44

Exercise 96 - continued

G(s) = 2000(s + 0.5)s(s + 5)(s + 50) =

MECE 3350 - C. Rossa 35 / 44 Lecture 16

Page 36: Lecture 16 Bode Plots 1/2 - BioMechatronics

36/44

Exercise 96 - continued

G(s) =4( s

0.5 + 1)s( s

5 + 1)( s50 + 1)

MECE 3350 - C. Rossa 36 / 44 Lecture 16

Page 37: Lecture 16 Bode Plots 1/2 - BioMechatronics

37/44

Exercise 96 - continued

G(s) =4( s

0.5 + 1)s( s

5 + 1)( s50 + 1)

MECE 3350 - C. Rossa 37 / 44 Lecture 16

Page 38: Lecture 16 Bode Plots 1/2 - BioMechatronics

38/44

Exercise 96 - continued

Repeat the magnitude plot for the following function

G(s) = 2000(s + 0.5)s(s + 10)(s + 50) =

MECE 3350 - C. Rossa 38 / 44 Lecture 16

Page 39: Lecture 16 Bode Plots 1/2 - BioMechatronics

39/44

Exercise 97

The body plot of a system was determined experimentally using a sinusoidalwave excitation. Estimate its transfer function.

-80

-70

-60

-50

-40M

agni

tude

(dB

)

10-4 10-2 100 102 104

-90

-45

0

45

90

Pha

se (

deg)

Frequency (rad/s)

MECE 3350 - C. Rossa 39 / 44 Lecture 16

Page 40: Lecture 16 Bode Plots 1/2 - BioMechatronics

40/44

Exercise 97 - continued

-80

-70

-60

-50

-40

Mag

nitu

de (

dB)

10-4 10-2 100 102 104

-90

-45

0

45

90

Pha

se (

deg)

Frequency (rad/s)

MECE 3350 - C. Rossa 40 / 44 Lecture 16

Page 41: Lecture 16 Bode Plots 1/2 - BioMechatronics

41/44

Exercise 98

A robotic arm has a joint-control loop transfer function

G(s) = (s + 1)2

s(s + 0.1)(s + 10) .

Plot the Bode diagram of the transfer function.

MECE 3350 - C. Rossa 41 / 44 Lecture 16

Page 42: Lecture 16 Bode Plots 1/2 - BioMechatronics

42/44

Exercise 98 - continued

G(s) = (s + 1)2

s(s + 0.1)(s + 10)

MECE 3350 - C. Rossa 42 / 44 Lecture 16

Page 43: Lecture 16 Bode Plots 1/2 - BioMechatronics

43/44

Exercise 99

A typical industrial robot has multiple degrees of freedom. A unity feedbackposition control system for a force-sensing joint has a loop transfer function

W (s) = 10s( s0.1 + 1

)(s + 1)

( s80 + 1

) .Sketch the Bode diagram of this system.

MECE 3350 - C. Rossa 43 / 44 Lecture 16

Page 44: Lecture 16 Bode Plots 1/2 - BioMechatronics

44/44

Exercise 99 - continued

W (s) = 10s( s0.1 + 1

)(s + 1)

( s80 + 1

)

MECE 3350 - C. Rossa 44 / 44 Lecture 16

Page 45: Lecture 16 Bode Plots 1/2 - BioMechatronics

45/44

Next class...

• More on Bode plots

MECE 3350 - C. Rossa 45 / 44 Lecture 16