Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo...

28
Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics Finish up Mutual inductance – Ferromagnetism Maxwell equations Displacement current Demos

Transcript of Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo...

Page 1: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32

• Cartoon • Warm-up problem• Opening Demo• Topics

– Finish up Mutual inductance– Ferromagnetism – Maxwell equations– Displacement current

• Demos

Page 2: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

What is the magnetic energy stored in a solenoid or coil

dUB

dt= Li

di

dt

dUB = Lidi

dUB0

UB∫ = Lidi0

i

UB = Lidi0

i

∫ = 12 Li2

UB = 12 Li2

For an inductor L Now define the energy per unit volume

uB =UB

Al

Area A l

uB =12 Li2

Al=

L

l

i2

2A

L

l= μ0n

2A

uB =12 Li2

Al= 1

2 μ0n2i2

uB =B2

2μ0 €

B = μ0ni

uE =E 2

2ε0

The energy density formula is valid in general

Page 3: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

What is Mutual Inductance? M

When two circuits are near one another and both have currents changing, they can induce emfs in each other.

On circuit boards you have to be careful you do not put circuits near each other that have large mutual inductance.

They have to be oriented carefully and even shielded.

221111 IMILm +=φ

112222 IMILm +=φ

MMM == 2112

1 2I1

I2

Page 4: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.
Page 5: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

75. A rectangular loop of N closely packed turns is positioned near a long, straight wire as shown in the figure.

(a) What is the mutual inductance M for the loop-wire combination?

(b) Evaluate M for N = 100, a = 1.0 cm, b = 8.0 cm, and l = 30 cm.

Φ= Bwire ldr =μ0il

2πrdr =

a

a +b

∫a

a +b

∫ μ0il

2πln r a

a +b =μ0il

2πln(1+

b

a)

(a) The flux over the loop cross section due to the current i in the wire is given by

M =NΦ

i=

Nμ0l

2πln 1+

b

a

⎝ ⎜

⎠ ⎟

M =NΦi

Page 6: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

(b) Evaluate M for N = 100, a = 1.0 cm, b = 8.0 cm, and l = 30 cm.

(b) From the formula for M obtained,

( ) ( )⎟⎠

⎞⎜⎝

⎛ +⋅×

=−

0.1

0.81ln

2

30.0104100 7

π

π mmHM

H5103.1 −×=

M =Nμ0l

2πln 1+

b

a

⎝ ⎜

⎠ ⎟

Page 7: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Ferromagnetism

Iron, cobalt, nickel, and rare earth alloys exhibit ferromagnetism.The so called exchange coupling causes electron magnetic momentsof one atom to align with electrons of other atoms. This alignment producesmagnetism. Whole groups of atoms align and form domains.

(See Figure 32-12 on page 756)

A material becomes a magnet when the domains line up adding all themagnetic moments.You can actually hear the domains shifting by bringing up an magnet and hear the induced currents in the coil. Barkhausen Effect

Two other types of magnetic behavior are paramagnetism or diamagnetism.

Page 8: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

What is the atomic origin of magnetism?

Electron spinning on its axis Electron orbiting around the nucleus

Page 9: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Spin Magnetic Dipole Moment of the Electron

rμ =−

e

m

r S

e =1.6 ×10−9Coulombs

m = 9.11×10−31kg

S is the angular momentum due to the electron’s spin. It has units kg.m2/s. μ has units of A.m2 - current times areaRecall for a current loop, the magnetic dipole moment = current times area of loop

In the quantum field theory of the electron, S can not be measured. Only it’s component along the z axis can be measured. In quantumphysics, there are only two values of the z component of the electron spin.

Page 10: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Therefore, only the z component of μ can be measured.Its two possible values are:

μz = ±eh

4πmCorresponding to the two values of the electron spin quantum number +1/2and -1/2

The above quantity is called the Bohr magneton and is equal to:

μB = μ z =eh

4πm= 9.27 ×10−24 A.m2

The magnetic moment of the electron is the prime origin of ferromagnetism in materials.

Page 11: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

22. The dipole moment associated with an atom of iron in an iron bar is 2.1x10-23 J/T. Assume that all the atoms in the bar, which is 5.0 cm long and has a cross-sectional area of 1.0 cm2, have their dipole moments aligned.

(a) What is the dipole moment of the bar?

The number of iron atoms in the iron bar is

N =7.9g cm3( ) 5.0cm( ) 1.0cm2( )

55.847g mol( ) 6.022 ×1023mol( )=4.3×1023.

Thus, the dipole moment of the bar is

μ = 2.1 ×10−23 J T( ) 4.3 ×1023( ) = 9.03A ⋅m2 .

Page 12: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

(b) What torque must be exerted to hold this magnet perpendicular to an external field of 1.5 T? (The density of iron is 7.9 g/cm3)

(b) τ =μBsin90o = 9.03A⋅m2( ) 1.5T( ) =13.5N⋅m

Page 13: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

(C) Use the dipole formula to find the magnitude and direction of the magnetic field 1cm from the end of the bar magnet on its central axis at P.

μ 89 m2

5 cm

A = 1 cm2

B =μ0μ

2πz3

B =4π ×10−7 N

A 2 8.9A.m2

π × 0.05m(.01m)2

B =4 ×10−78.9N / A.m

5 ×10−6

B = 0.71 T

BT =μ0μ2πL

dzz3

.06

.01

∫ =(μ0μ2πL

)(−2z2

0.06

0.01

) = (μ0μ2πL

)(−2

(0.01)2)

BT = dB∫ =μ0

z3∫

dμ =μ

ALAdz =

μ

Ldz

z. P

Page 14: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

BigBite is a 50 ton electromagnet with a 25 cm by 100 cm

gap

B = 1 Tesla

Page 15: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.
Page 16: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.
Page 17: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Maxwells Equations:In 1873 he wrote down 4 equations which govern all

classical electromagnetic phenomena.You already know two of them.

1. ΦE =r E .dA∫ = qenc /ε0

2. ΦB =r B .dA∫ = 0

Page 18: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

A magnetic field changing with time can produce an electric field: Faraday’s law

3. r E .d

r s ∫ = −

dΦB

dt

Electric lines curl around changing magnetic field lines

Line integral of the electric fieldaround the wire equals the change of Magnetic flux through the areaBounded by the loop

Example

Page 19: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

New Question: Can a changing electric field with time produce an magnetic field?

.

Yes it can and it is called

Maxwell’s law of induction

rB .d

r s ∫ = μ0ε0

dΦE

dt

Page 20: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Maxwell’s law of induction

rB .d

r s ∫ = μ0ε0

dΦE

dt

Consider the charging of our circular plate capacitor

B field also induced at point 2.

When capacitor stops chargingB field disappears.

current ever actually flows through the capacitor

Page 21: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Find the expression for the induced magnetic field B that circulates around the electric field lines of a

charging circular parallel plate capacitor

r B .d

r s ∫ = μ0ε0

dΦE

dt

0

BE

R

r

rB .d

r s ∫ = (B)(2πr) since B parallel ds

Flux withinthe loop of radius r

r < R

μ0ε0

dΦE

dt= μ0ε0

d(AE)

dt= μ0ε0A

dE

dt

(B)(2πr) = μ0ε0πr2 dE

dt

B =μ0ε0r

2

dE

dt

r< R r > R

B =μ0ε0R

2

2r

dE

dt

Page 22: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Ampere-Maxwell’s Law

4. r B .d

r s ∫ = μ0ε0

dΦE

dt+ μ0ienc

rB .d

r s ∫ = μ0ε0

dΦE

dt

rB .d

r s ∫ = μ0i

Maxwell combined the above two equations to form oneequation

How do we interpret this equation?

This term has units of current

Page 23: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

What is the displacement current?

r B .d

r s ∫ = μ0ε0

dΦE

dt+ μ0ienc

ε0

dΦE

dt= id

This is called the displacement current id

r B .d

r s ∫ = μ0id + μ0ienc

The term is really is a transfer of electric and magnetic energy from one plate to the other while the plates are being charged or discharged. When charging stops, this term goes to zero. Note it is time dependent.

Page 24: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Can I detect the magnetic field associated with displacement current?

ε0

dΦE

dt= id

rB .d

r s ∫ = μ0ε0

dΦE

dt

Show that the displacement current in the gap of the two capacitor plates is equal to the real current outside the gap

Page 25: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Calculation of id

E =σ

ε0

=q / A

ε0

q = ε0AE

For the field inside a parallel plate capacitor

i =dq

dt= ε0A

dE

dtThis is the real current i charging the capacitor.

Solving for q

First find the real current i

id = ε0

dΦE

dt

Next find the displacement current

id = ε0

d(AE)

dt= ε0A

dE

dt

displacement current =real current. No charge actually moves across the gap.

Page 26: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Calculate Magnetic field due to displacement current

Current is uniformly spread over the circular plates of the capacitor.Imagine it to be just a large wire of diameter R. Then use the formula for the magnetic field inside a wire.

B = (μ0id

2πR2)r Inside the capacitor

B =μ0id

2πrOutside the capacitor

Page 27: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Question 11: A circular capacitor of radius R is being charged through a wire of radius R0. Which of the

points a, b, c, and d correspond to points 1, 2, and 3 on the graph

Where is the radius R0 and R on the graph?

Page 28: Lecture 12 Magnetism of Matter: Maxwell’s Equations Chp. 32 Cartoon Warm-up problem Opening Demo Topics –Finish up Mutual inductance –Ferromagnetism –Maxwell.

Summary of Maxwell EquationsIntegral form

encE i

dtd

sdB 000. .4 μεμ +Φ

=∫rr

3. r E .d

r s ∫ = −

dΦB

dt

1. ΦE =r E .dA∫ = qenc /ε0

2. ΦB =r B .dA∫ = 0