Lecture 12 Color model and color image processing · Lecture 12 Color model and color image...

44
Lecture 12 Color model and color image processing Color fundamentals Color fundamentals • Color models Pseudo color image Pseudo color image • Full color image processing

Transcript of Lecture 12 Color model and color image processing · Lecture 12 Color model and color image...

Page 1: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Lecture 12 Color model and color image processing

Color fundamentals• Color fundamentals• Color models• Pseudo color imagePseudo color image• Full color image processing

Page 2: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color fundamental• The color that humans perceived in an object are

determined by the nature of the light reflected from the objectobject

• Light is electromagnetic spectrum.

Page 3: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Visible light and Color

• Visible light is composed of a relatively narrow band of frequencies in the ES.

• Human color perceive is a composition of different wavelength spectrum

• The color of an object is a body that favours reflectance• The color of an object is a body that favours reflectance in a limited range of visible spectrum exhibits some shade of colors

• Example– White: a body that reflects light that balanced in all visible

wavelengthsg– . E.g. green objects reflect light with wavelength primarily in the

500 to 570 nm range while absorbing most of the energy at other wavelengths. g

Page 4: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Characterization of light

• If the light achromatic (void of color), if its only attribute is intensity. Gray level refers to a scalar measure of i t it th t f bl k t d fi ll tintensity that ranges from black, to grays, and finally to white

• Chromatic light spans the ES from about 400 to 700 nmChromatic light spans the ES from about 400 to 700 nm• Three basic quantities are used to describe the quality of

a chromatic light source• Radiance: total amount of energy flows from the light

source• Luminance: amount of energy perceive from light source• Luminance: amount of energy perceive from light source • Brightness: a subjective descriptor that is practically

impossible to measure

Page 5: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color sensors of eyes: cones• Cones can be divided into three principle sensing

categories, roughly red (65%), green (33 %), blue (2%)C l i bl bi ti f th ll d• Colors are seen as variable combination of the so-called primary colors Red (R), Green (G), and blue (B).

Page 6: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Primary colors and secondary colors• CIE (Commission Internationale de

l’Eclariage) standard for primary colorcolor– Red: 700 nm– Green: 546.1 nm– Blue: 435.8 nm

• Primary color can be added to produce secondary colorsproduce secondary colors– Primary colors can not produce all

colors

Pi t ( l t )• Pigments (colorants)– Define the primary colorsto be the absorbing one andreflect other two

Page 7: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Characterization• Brightness, hue, and saturation• Brightness: achromatic notion of intensity

H e attrib te associated ith dominating a elength in a mi t re of• Hue: attribute associated with dominating wavelength in a mixture of light waves, i.e., the dominant color perceived by observer

• Saturation: refers to the relative purity or the amount white light mixed with a huemixed with a hue.

• Hue and saturation together are called chromaticity, so a color can be characterized by its brightness and chromaticity

• The amount of red, green and blue to form a particular color are called tristimulus values, denoted by X, Y, Z. The a color is defined by

, ,

1

X Y Zx y zX Y Z X Y Z X Y Z

x y z

= = =+ + + + + +

+ + 1x y z+ + =

Page 8: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 9: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color models (color space, or color system)

• A color model is a specification of a coordinate system and subspace where each color is represented as single

i tpoint• Examples

– RGBRGB – CMY (cyan, magenta, yellow)/CMYK (cyan, magenta, yellow,

black)NTSC– NTSC

– YCbCr– HSV– HSI

Page 10: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

RGB Color models

• (R, G, B): all values of R, G, B are between 0 and 1. • With digital representation, for a fixed length of bits each

color element. The total number of bits is called color depth, or pixel depth. For example, 24-bit RGB color (r, g, b), 8-bits for each color. The 8-bit binary number rg, b), 8 bits for each color. The 8 bit binary number r represents the value of r/256 in [0,1]

Page 11: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Displaying Colors in RGB model

Page 12: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 13: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

CMY and CMYK model

• (C, M, Y) 11

C RM G⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥1

1M GY B

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

• CMYK: (C, M, Y, B), where B is a fixed black color. This basically for printing purpose, where black is usually the d i i l Wh i i bl k i B hdominating color. When printing black, using B rather than using (C, M, B) = (1, 1, 1)

Page 14: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

NTSC color space, YCBCr, HSV

• NSTC (YIQ): Y-luminance, I-hue, Q-Saturation

0 299 0 587 0 114Y R⎡ ⎤ ⎡ ⎤ ⎡ ⎤0.299 0.587 0.1140.596 0.274 0.3220 211 0 523 0 312

Y RI GQ B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

• YCbCr color space

0.211 0.523 0.312Q B⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

16 65.481 128.553 24.966128 037.797 74.203 112

Y RCb G⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

128 112 93.786 18.214Cr B⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Page 15: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

HSI

• HSI color space: H – hue, S-saturation, I-intensity

,360

1

B GH

B Gθ ≤⎧

= ⎨ −θ >⎩

12 1/ 2

1 [( ) ( )]2cos { }

[( ) ( )( )]

R G R B

R G R B G B−

− + −θ =

− + − −[( ) ( )( )]31 [min( , , )]

( )S R G B

R G B= −

+ +1 ( )3

I R G B= + +

Page 16: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Pseudocolor image processing• Pseudocolor image processing is to assign colors to gray

values based on a specified criterion. P h i li ti d i t t ti f• Purpose: human visualization, and interpretation for gray-scale events

• Intensity slicing: partition the gray-scale into P+1Intensity slicing: partition the gray scale into P 1 intervals, V1, V2, …, Vp+1 . Let f(x, y) =ck , if f(x,y) is in Vkwhere ck is the color assigned to level k

Page 17: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 18: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 19: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 20: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Intensity to color tranformation

• Transform intensity function f(x,y) into three color component

Page 21: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 22: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Multiple images

• If there are multiple image of the same sense avaiable, additional processing can be applied to make one image

Page 23: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 24: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 25: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Basics of full-color image processing

• Full-color image

( ) ( )R⎡ ⎤ ⎡ ⎤( , ) ( , )( , ) ( , ) ( , ) ,

( ) ( )

R

G

c x y R x yc x y c x y G x y

c x y B x y

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦( , ) ( , )

0,1,..., 1, 0,1,..., 1Bc x y B x y

x M y N

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= − = −

• Processing method can be applied to each color component.– Apply to both scalar and vector– Operation on each component is independent of the other

component

Page 26: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 27: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 28: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color transformation

• Transformation within a single color model

( ) [ ( )]g x y T f x y

1 2

( , ) [ ( , )]( , ,..., ), 1,...,i i n

g x y T f x ys T r r r i n

== =

• Examples:

1 2( )i i n

( , ) ( , ),1 1:

g x y kf x y kHSI s kr

= < <=3 3:

: , 1, 2,3( ) : (1 ) 1 2 3

i i i

HSI s krRGB s k r iCMY K s kr k i

=

= =

= + − =( ) : (1 ), 1,2,3i iCMY K s kr k i= + − =

Page 29: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 30: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color Complements

Page 31: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color sliceing

• High light a specific range of colors in an image0.5 | | ,

1 22j jWr a

i⎧ − >⎪⎨

2 20

, 1, 2,...,2

0.5 ( )

j ji

i

n

j j

s i nr otherwise

r a R

= =⎨⎪⎩⎧

− >⎪⎨

∑ 01( )

, 1, 2,...,j jji

i

s i nr otherwise

=⎪= =⎨⎪⎩

Page 32: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Tone and Color Corrections

116 ( ) 16W

YL hY

∗ = −

500[ ( ) ( )]

200[ ( ) ( )]

W

W W

X Ya h hX YY Zb h h

= −

3

200[ ( ) ( )]

0.5 0.008856( )7 787 16 /116 0 008856

W W

Y Zb h hY X

q qh q

∗ = −

⎧ >⎪= ⎨+ ≤⎪⎩7.787 16 /116 0.008856q q+ ≤⎪⎩

Page 33: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 34: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 35: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Histogram Processing

Page 36: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Smoothing and Sharpening

• Color image smoothing.

⎡ ⎤

( )

1 ( , )s t S

R s tK ∈

⎡ ⎤⎢ ⎥⎢ ⎥

∑( , )

1 1( , ) ( , ) ( , )

xys t SK

c x y c s t G s t

∈⎢ ⎥⎢ ⎥⎢ ⎥= =⎢ ⎥

∑ ∑( , ) ( , )

( , ) ( , ) ( , )

1xy xys t S s t S

c x y c s t G s tK K∈ ∈⎢ ⎥

⎢ ⎥⎢ ⎥

∑ ∑

∑( , )

1 ( , )xys t S

B s tK ∈

⎢ ⎥⎢ ⎥⎣ ⎦

Page 37: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 38: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 39: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

• Color Image Sharpening

( , ) ( , ) ( , )cs x y c x y c x y= −2[ ( , )]R x y⎡ ⎤∇

⎢ ⎥2 2

2

[ ( , )] [ ( , )][ ( )]

c x y G x yB

⎢ ⎥∇ = ∇⎢ ⎥⎢ ⎥∇2

2

[ ( , )]B x y⎢ ⎥∇⎣ ⎦2( , ) ( , ) [ ( , )]cs x y c x y c x y= −∇

Page 40: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 41: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 42: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo

Color image noise

Page 43: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo
Page 44: Lecture 12 Color model and color image processing · Lecture 12 Color model and color image processing • Color fundamentalsColor fundamentals • Color models • Pseudo color imagePseudo