Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1...

4
6/26/11 Copyright ©2011 by Moshe Matalon. This material is not to be sold,reproduced or distributed without the prior wri@en permission of the owner, M Matalon. 1 Lecture 1 Conservation equations for chemically reacting gas mixtures Conservation of mass Dt convective derivative ∂ρ ∂t + v ·∇ρ + ρ∇· v =0 Dt + ρ∇· v =0 time rate of change ... following a fluid particle ∇· v = 1 ρ Dt Dt =0 · v =0 incompressible flow ∂ρ ∂t + ∇· ρv =0 Conservation equations for a pure substance

Transcript of Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1...

Page 1: Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1 Conservation equations for chemically reacting gas mixtures ... = e+ 1 2 v 2 = total energy

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M  Matalon.   1  

Lecture 1 Conservation equations for chemically

reacting gas mixtures

Conservation of mass

Dtconvectivederivative

∂ρ

∂t+ v ·∇ρ+ ρ∇ · v = 0

⇒ Dρ

Dt+ ρ∇ · v = 0

time rate of change . . .following a fluid particle

∇ · v = −1

ρ

Dt

Dt= 0 ⇒ ∇ ·v = 0

incompressible flow

∂ρ

∂t+∇ · ρv = 0

Conservation equations for a pure substance

Page 2: Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1 Conservation equations for chemically reacting gas mixtures ... = e+ 1 2 v 2 = total energy

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M  Matalon.   2  

Conservation of momentum ρDv

Dt= ρg +∇ · σ

σ = −pI+Σ stress tensor

Σ = µ[(∇v) + (∇v)T] + (κ− 2

3µ)(∇ · v)I

pressure

shearviscosity

bulkviscosity

viscous stress tensor (Newtonian Fluid)

σ is a symmetric tensor, i.e σij = σji.

(∇ · σ)i =∂σij

∂xjsummation convention adopted(∇v)ij =

∂vi∂xj

ρDv

Dt= −∇p+∇ ·Σ+ ρg

The first term is a measure of the deformation of the fluid element and thesecond term is the rate of change of its volume

Conservation of energy

ρDeT

Dt= ρg · v +∇ · (σ · v)−∇ · q

rate of work done on the fluid by

gravitational & viscous forces

rate of heat transferred to

the fluid

eT = e+ 12v

2 = total energy

ρDv

Dt= ρg +∇ · σ / · v ⇒ ρ

D

Dt

�1

2v2

�= ρg · v + (∇ · σ) · v

ρDe

Dt= [∇ · (σ · v)− (∇ · σ) · v]−∇ · q

σ : ∇v = σij∂vi∂xj

q - heat flux vector(positive for outward heat transport)

Page 3: Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1 Conservation equations for chemically reacting gas mixtures ... = e+ 1 2 v 2 = total energy

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M  Matalon.   3  

ρDe

Dt= −p∇ · v + Φ−∇ · qσ = −pI+Σ

Φ =1

�∂vi∂xj

+∂vj∂xi

�2

+ (κ− 2

3µ)(∇ · v)2

Rate of dissipation of internal energy due to

viscous forces Dissipation function

ρDh

Dt=

Dp

Dt+ Φ−∇ · q

Rate of internal energy increase by compression

An alternative form, in terms of the enthalpy h = e+ p/ρ

Dh

Dt=

De

Dt+

1

ρ

Dp

Dt− p

ρ2Dρ

Dt

= ρDh

Dt− Dp

Dt− p∇ · v

ρDh

Dt=

Dp

Dt+ Φ−∇ · q

ρDv

Dt= −∇p+∇ ·Σ+ ρg

∂ρ

∂t+∇ · ρv = 0

energy  

momentum  

mass  

ConsCtuCve  relaCons:  

Σ = µ[(∇v) + (∇v)T] + (κ− 2

3µ)(∇ · v)I

Summary

∇ · q = −λ∇T

Newtonian  fluid  

Fourier  Law  of  heat  conducCon  (neglecCng  radiaCon,  etc.)  

Page 4: Lecture 1 - Equations - Princeton University · permissionoftheowner,MMatalon. 1 Lecture 1 Conservation equations for chemically reacting gas mixtures ... = e+ 1 2 v 2 = total energy

6/26/11  

Copyright  ©2011  by  Moshe  Matalon.  This  material  is  not  to  be  sold,reproduced  or  distributed  without  the  prior  wri@en  permission  of  the  owner,  M  Matalon.   4  

Thermodynamics

State  of  the  gas  is  uniquely  determined  by  two  variables  p = p(ρ, T ), e = e(p, T ), etc.

Ideal  gas:    

e = e(T ), h = h(T ) only

Reference  temperature    

Specific  heats  at  constant  pressure/volume   cp , cv

dh

dT= cp ⇒ h = ho +

� T

T o

cpdT

de

dT= cv ⇒ e = eo +

� T

T o

cvdT

h = e+ p/ρdh

dT=

de

dT+

d

dT

�p

ρ

�cp = cv +R/W⇒

raCo  of  specific  heats   γ = cp/cv > 1

p =ρRT

W

universal  gas  constant  

specific  gas  constant  

R = 8.3145 cal/mol·KR̄ = R/W

TdS = dh− 1

ρdpentropy  

ρDh

Dt=

Dp

Dt+ Φ−∇ · q ρ

DS

Dt=

1

T(Φ−∇ · q)

reversible  process:                                irreversible  process:    In  an  isentropic  flow  (adiabaCc  +  reversible)  the  entropy  remain  constant  

Φ = 0Φ > 0

dh = dp/ρ

dh = cpdT⇒ dp

p= γ

ρpρ−γ = const.

∆S ∼ heat acquired/T∆S larger than when Φ = 0

speed  of  sound   a =

��∂p

∂ρ

S

=�γp/ρ =

�γRT

TDS

Dt=

Dh

Dt− 1

ρ

Dp

Dt