Lecture 05

41
7/17/2019 Lecture 05 http://slidepdf.com/reader/full/lecture-05-568bef1800b38 1/41 Chapter 5 Simple Applications of Macroscopic Thermodynamics 

Transcript of Lecture 05

Page 1: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 1/41

Chapter 5Simple Applications of Macroscopic

Thermodynamics 

Page 2: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 2/41

Preliminary DiscussionClassical, Macroscopic,

Thermodynamics•  Now, we drop the statistical mechanics

notation for average quantities. So that now, All Variables are Averages Only! • We’ll discuss relationships between

macroscopic variables using

The Laws of Thermodynamics

Page 3: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 3/41

• Some Thermodynamic Variables of Interest:

Internal ner!y " , ntropy " S

Temperature " T• Mostly for Gases:

(but also true for any substance!

#ternal Parameter " V$enerali%ed &orce " p'V " (olume, p " pressure)

• For a General System:#ternal Parameter " #

$enerali%ed &orce " *

Page 4: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 4/41

• "ssume that the #ternal Parameter " Volume

V in order to have a specific case to discuss. #or

systems with another e$ternal parameter #, theinfinitesimal wor% done + " *d#. &n this case,

in what follows, replace p by * ' dV by d#.• #or infinitesimal, quasistatic processes!

-st . /nd 0a1s of Thermodynamics-st 0a1: +2 " d 3 pdV

/nd 0a1: +2 " TdSombined st  " #nd  Laws

TdS " d 3 pdV

Page 5: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 5/41

ombined st  " #nd  Laws

TdS " d 3 pdV•  Note that, in this relation, there are

5 Variables: T, S, , p, V• &t can be shown that!

 Any $ of these can always be e%&ressed

as f'nctions of any # others(• )hat is, there are always # inde&endent

variables " $ de&endent variables( )hich

# are chosen as inde&endent is arbitrary(

Page 6: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 6/41

 *rief , Pure Math Discussion

• *onsider + variables! #, y, %4 Suppose we

%now that # . y are +nde&endent Variables ( 

)hen, +t M'st *e ,ossible to e$press % as a

function of # . y. )hat is,

There M'st be a F'nction % " %'#,y).

• #rom calculus, the total differential of %'#,y) 

has the form!

d% ≡ '%6#)yd# 3 '%6y)#dy 'a)

Page 7: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 7/41

• Suppose that, in this e$ample of + variables! #, y, %, we

want to ta%e y ' % as independent variables instead of #

' y. )hen,

There M'st be a F'nction # " #'y,%).• #rom calculus, the total differential of #'y,%) is!

d# ≡ '#6y)%dy 3 '#6%)yd% 'b)• sing 'a) from the previous slide

-d%≡

 '%6#)yd# 3 '%6y)#dy 'a)

' 'b) together, the partial derivatives in 'a) ' those in 'b) 

can be related to each other.• We always assume that all functions are analytic.

 So- the #nd  cross derivatives are e.'al 

Such as! '/

%6#y)≡

 '/

%6y#),  etc.

Page 8: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 8/41

Mathematics Summary• *onsider a function of / independent variables!

f " f'#-,#/)4• &t’s e$act differential is

df ≡ y-d#- 3 y/d#/ 

' by definition!

• 0ecause f'#-,#/) is an analytic function, it is always true

that!

/ 1

/ 1

1 / x x

 y y

 x x

 ∂ ∂= ÷ ÷∂ ∂

 • 2ost Ch4 5 applications use this with the

ombined st  " #nd  Laws of Thermodynamics 

TdS " d 3 pdV

Page 9: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 9/41

Some Methods Methods . /sef'l Math Tools/se f'l Math Tools for

Transformin! Deri(ati(esTransformin! Deri(ati(es

Deri(ati(e In(ersion

Triple Product '#y%7- rule)

Chain 8ule #pansion to Add Another Variable

Ma#1ell 8eciprocity 8elationship

 x x  F  y y

 F   

  

 ∂∂

=  

  

 ∂∂ 1

T T    S  P  P 

S   

  

 ∂∂

=   

  ∂∂ 1

1−=   

  ∂∂ 

  

  ∂∂ 

  

  ∂∂

 x F  y   F  y

 y x

 x F 

1−=   

  ∂∂ 

  

  ∂∂ 

  

  ∂∂

T  H  P    H 

 P 

 P 

 H 

 x x x  y

 F 

 y

 F 

     ∂Φ∂      Φ∂∂=     ∂∂ T C T 

 H 

 H 

 P 

 P 

 P  P  P 

11

==     ∂∂     ∂∂=     ∂∂

( )   ( )

 y

 x

 x

 y

 x

 y F 

 y

 x F  

 

 

 

 

∂∂∂=  

 

 

 

 

∂∂∂

 yx xy

  F  F    =

Page 10: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 10/41

Pure Math: 9acobian Transformations

•" 3acobian )ransformation is often used to

transform from one set of independentvariables to another.•#or functions of / variables f ' % , y) ' g ' % , y) it is!

( )

( )   y x x y

 x y

 x y

 x

 g 

 y

  f  

 y

 g 

 x

  f  

 y

 g 

 x

 g 

 y  f  

 x  f  

 y x

 g   f     

  ∂∂

  

  

 ∂∂

−  

  

 ∂∂

   

  ∂∂

=  

  

 

∂  

  

 

   

  ∂∂ 

  

  ∂∂

≡∂∂

,

,

Determinant

Page 11: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 11/41

Transposition

In(ersion

Chain 8ule#pansion

( )( )

( )( ) y x

  f   g 

 y x

 g   f  

,

,

,

,

∂∂−=

∂∂

( )

( )   ( )( ) g   f  

 y x y x

 g   f  

,

,

1

,

,

∂∂=∂

( )( ) ( )( ) ( )( ) y xw z 

w z  g   f  

 y x g   f  

,,

,,

,, ∂∂∂∂=∂∂

9acobian Transformations9acobian Transformations

;a(e Se(eral /sef'l ,ro&erties/se f'l ,ro&erties

Page 12: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 12/41

• Suppose that we are only interested in the first

 partial derivative of a function f'%,!) with respect

to % at constant !:

( )

( ) g  z 

 g  f 

 z 

 f 

 g  ,

,

∂∂= 

  

  ∂∂

( )

( )( )

( ) y x

 g  z 

 y x

 g   f  

 z 

  f  

 g 

,

,

,

,

∂∂∂

=   

  ∂∂

• )his e$pression can be simplified using the chain

rule e$pansion ' the inversion property

Page 13: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 13/41

d " TdS 7 pdV '-)

#irst, choose S ' V as inde&endent variables:

≡ 'S,V)

Properties of the Internal ner!y

dV V 

U dS 

U dU 

S V 

   

  ∂∂

+   

  ∂∂

=

T S 

=   

  ∂∂

 pV 

−=   

  ∂∂

*omparison of '-) ' '/) clearly shows that

d

'/)

"pplying the general result with /nd cross derivatives gives!

V S    S 

 p

T  

 

 

 

 

∂−= 

 

 

 

 

∂ Ma%well 0elation Ma%well 0elation II

and

Page 14: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 14/41

&f S ' p are chosen as inde&endent variables, it is

convenient to define the following energy!

; ≡ ;'S,p) ≡  3 pV ≡  1nthal&y 1nthal&yse the combined -st . /nd 0a1s. 4ewrite them in terms of d;: d

" TdS 7 pdV " TdS 7 <d'pV) 7 Vdp= or 

d; " TdS 3 Vdp

*omparison of '-) ' '/) clearly shows that

'-)

'/)

"pplying the general result for the /nd cross derivatives gives!

 pS    S 

 p

T  

 

 

 

 

∂=  

 

 

 

 

0ut, also!

and

 Ma%well 0elation Ma%well 0elation IIII

Page 15: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 15/41

&f T ' V are chosen as inde&endent variables, it is

convenient to define the following energy!

& ≡ &'T,V) ≡  > TS≡  2elmholt3 Free 2elmholt3 Free

 1nergy 1nergy• se the combined -st . /nd 0a1s. 4ewrite them in terms of d&:

d " TdS 7 pdV " <d'TS) 7 SdT= 7 pdV or 

  d& " >SdT 7 pdV '-)

• 0ut, also! d& ? ' 

&6 

T)VdT 3 ' 

&6 

V)TdV '/)• *omparison of '-) ' '/) clearly shows that 

' &6 T)V ? >S and ' &6 V)T ? >p

• "pplying the general result for the /nd cross derivatives gives!

 Ma%well 0elation Ma%well 0elation IIIIII

Page 16: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 16/41

&f T ' p are chosen as inde&endent variables, it is

convenient to define the following energy!

$ ≡ $'T,p) ≡  7TS 3 pV ≡ Gibbs Free 1nergyGibbs Free 1ner  gy• se the combined -st . /nd 0a1s. 4ewrite them in terms of d;: 

d " TdS 7 pdV " d'TS) > SdT 7 <d'pV) 7 Vdp= or 

d$ " >SdT 3 Vdp '-)

• 0ut, also! d$ ? ' 

$6 

T)pdT 3 ' 

$6 

p)Tdp '/)

• *omparison of '-) ' '/) clearly shows that

' $6 T)p ? >S and ' $6 p)T ? V

• "pplying the general result for the /nd cross derivatives gives! 

 Ma%well 0elation Ma%well 0elation IVIV

Page 17: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 17/41

-4 Internal ner!y: ≡ 'S,V)

/4 nthalpy: ; " ;'S,p) ≡  3 pV

@4 ;elmholt% &ree ner!y: & " & 'T,V) ≡  7 TS

4 $ibbs &ree ner!y: $ " $'T,p)≡

  7 TS 3 pV

Summary: 1nergy F'nctions 1ner  gy F'nctions

ombined ombined st st 

"" ##nd nd  Laws Laws

  -4 d " TdS 7 pdV

  /4 d; " TdS 3 Vdp  @4 d& " > SdT 7 pdV

  4 d$ " > SdT 3 Vdp

Page 18: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 18/41

dy y

 zdx

 x

 zdz Ndy Mdx

 x y   

  

 ∂∂+ 

  

  

∂∂==+

 y x  x

 N 

 y

 M    

  ∂∂

=   

  

 ∂∂

 pS   S 

V  pT       ∂∂=      ∂∂V S    S 

 p

     ∂∂−=     ∂∂

V T    T 

 p

S  

 

 

 

 

∂= 

 

 

 

 

 pT    T 

 p

S  

 

 

 

 

∂−=  

 

 

 

 

-4 /4

@4 4

Another Summary: Ma#1ellBs 8elations

 'a) " 2 3

 'b) S " '2res6T)

 'c) ; " 3 pV

 'd) & " 7 TS

 'e) $ " ; > TS

-4 d " TdS 7 pdV

/4 d; " TdS 3 Vdp@4 d& " >SdT > pdV

4 d$ " >SdT 3 Vdp

Page 19: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 19/41

Ma#1ell 8elations: The Ma!ic SEuareFG

V & T

$

P;

S

5ach side is labeled with an

ner!y ', ;, &, $).)he corners are labeled with

Thermodynamic Variables

'p, V, T, S)4 6et theMa#1ell 8elations 

 by 7wal%ing8 around the

square. 9artial derivativesare obtained from the sides.

)he Ma#1ell 8elations

are obtained from the corners.

Page 20: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 20/41

Summary

The  Most ommon Most ommonMa#1ell 8elations:Ma#1ell 8elations:

 P T  P S 

V T V S 

 P 

 P 

 P 

 P 

   

  

∂∂= 

  

  

∂∂− 

  

  

∂∂= 

  

  

∂∂

     ∂∂=     ∂∂     ∂∂−=     ∂∂

 

Page 21: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 21/41

Ma#1ell 8elations: Table ' H ) 

i

Page 22: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 22/41

Internalner!y

;elmholt%

&ree ner!y

nthalpy

$ibbs &reener!y

Ma#1ell 8elationsMa#1ell 8elations from d, d&, d;, . d$

 

S C M bl P ti

Page 23: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 23/41

Some Common Measureable Properties

;eat Capacity at Constant Volume:

;eat Capacity at Constant Pressure:

M C M bl P ti

Page 24: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 24/41

More Common Measureable Properties

Volume #pansion Coefficient:

Isothermal Compressibility:

 4ote!! 8eifBsnotation for

this is J

The KulL Modulus is the

in(erse of the Isothermal

Compressibility

K ≡ ')>-

Page 25: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 25/41

Some Sometimes seful 8elationshipsSummary of 8esults

:erivations are in the te$t and;or are left to the student<

ntropy:

dT RT 

H dP 

RT 

RT 

Gd 

2−= 

 

  

 

nthalpy:

$ibbs &ree

ner!y:

T i l l

Page 26: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 26/41

Typical #ample• 6iven the entropy S as a function of temperature

T ' volume V, S " S'T,V), find a convenient

e%&ression for ' 

S6 

T)P, in terms of some

meas'reable &ro&erties(

• Start with the e$act differential!

• se the triple product rule ' definitions!

Page 27: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 27/41

• se a Ma#1ell 8elation:

• *ombining these e$pressions gives!

• *onverting this result to a partial derivative gives!

)hi b i

Page 28: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 28/41

• )his can be rewritten as!

• )he triple product rule is!

• Substituting gives!

Page 29: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 29/41

 4ote again the definitions:

• Volume #pansion Coefficient

N≡

V>-' 

V6 

T)p

• Isothermal Compressibility

 >V>-' 

V6 

p)T

•  4ote again!! 4eif’s notation for the

Volume #pansion Coefficient is J

Page 30: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 30/41

• sing these in the previous e$pression

 finally gives the desired res'lt:

•sing this result as a starting point,

 A G1410AL 01LAT+O4S2+,   between the

;eat Capacity at Constant Volume CV

' the

;eat Capacity at Constant Pressure Cp 

can be found as follows!

Page 31: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 31/41

• sing the definitions of the isothermal

compressibility and the volume e$pansion

coefficient , this becomes

 $eneral 8elationship

 bet1een C( . Cp

Page 32: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 32/41

Simplest Possible #ample: The Ideal $as

 P 

 RTP 

 RT 

vP 

 RT 

 P 

 RT 

 P v P 

v

v

 RT 

 R

vP 

 R

 P 

 RT 

T vT 

v

v

T T 

 P  P 

1

11

1

11

/

=

==   

  ∂∂−= 

  

  ∂∂−=

=

==   

  ∂∂= 

  

  ∂∂=

κ 

κ 

β 

β 

• #or an Ideal $as, it’s easily shown (4eif that the

 1.'ation of State (relation between pressure P, volume V,temperature T is (in per mole units<! PO " 8T. O " 'V6n)

• With this, it is simple to show that the volume e$pansion

coefficient N ' the isothermal compressibility are!

and

Page 33: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 33/41

and

• So, for an Ideal $as, the volume e$pansion coefficient

' the isothermal compressibility have the simple forms!

• We =ust found in general that the heat capacities at

constant volume ' at constant pressure are related as

• So, for an Ideal $as, the specific heats per mole

have the very simple relationship!

th S ti f l i

Page 34: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 34/41

ther, Sometimes seful, #pressions

T CONSTANT dV V 

P S 

T CONSTANT dP 

V S 

T CONSTANT dP T V T V H 

P    V 

T V 

P    P 

T P 

P    P 

T P 

∫ ∫ 

∫ 

=

=

=

− 

  

  ∂∂

−=

  

 

 

 

∂−=

 

  

  ∂∂−=

0

.

0

.

0

.

M A li ti i th C bi d

Page 35: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 35/41

More Applications: sin! the Combined

-st . /nd 0a1s 'The TdS 1.'ationsF)

Calorimetry A!ain• *onsider T1o Identical bQects, each of mass m, '

specific heat per %ilogram cP. See figure ne$t page.

bQect - is at initial temperature T-.bQect / is at initial temperature T/.

"ssume T/ R T-.

• When placed in contact, by the #nd  Law, heat 2 flows from the hotter (bQect / to the cooler 

(bQect -, until they come to a common

temperature, Tf .

Page 36: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 36/41

• T1o Identical bQects, of mass m, ' specific heat per

%ilogram cP. bQect - is at initial temperature T-. bQect / is

at initial temperature T/.

• T/ R T-. When placed in contact, by the #nd  Law, heat 2 flows from the hotter (bQect / to the cooler (bQect -, 

until they come to a common temperature, Tf .

bQect -Initially

at T-

bQect /Initially

at T/

2⇒

  2eat Flows

/

/1   T T T  f 

+=

•"fter a long enough time, the two ob=ects are at the sametemperature Tf . Since the / ob=ects are identical, for this case,

#or some timeafter initial

contact!

Page 37: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 37/41

• )he 1ntro&y hange S for this process can also

 be easily calculated!

    

     +=∆

   

  

 =

   

 

 

 

 

  

  

 =

   

 

 

 +

   

 

 

 =

+=∆

∫ ∫ 

/1

/1

/1

/

/1/1

/

/1

/ln/

ln/lnln

lnln1 /

T T T T mcS 

T T 

T mc

T T 

T mc

T T 

T mc

T mc

dT 

dT mcS 

 P 

 f 

 P 

 f 

 P 

 f 

 P 

 f  f 

 P 

T  P 

 f f 

• >f course, by the #nd  Law,

the entropy change S m'st

be &ositive!! )his requires

that the temperatures satisfy! ?(

?/

@/

/

//1

/1//

/1

/1/1//

/1

/1/1

>−

>−+>++

>+

T T 

T T T T 

T T T T T T 

T T T T 

Some seful TdS EuationsF

Page 38: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 38/41

Some seful TdS Euations• 4OT1: &n the following, various quantities are

written in per mole units< Wor% with the

ombined st  " #nd  Laws:

Definitions:• ≡ Number of moles of a substance.

• O≡

 'V6)≡

 Aolume per mole.• u ≡ '6) ≡ &nternal energy per mole.

• h ≡ ';6) ≡ 5nthalpy per mole.

• s≡

 'S6)≡

 5ntropy per mole.• c( ≡ 'C(6) ≡ const. volume specific heat per

mole.

• cP ≡

 'CP6)≡

 const. pressure specific heat per mole.

6i th d fi iti it b h th t

Page 39: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 39/41

dP c

dvv

cdP  P 

T cdvv

T cTds

dP TvdT cdP T 

vT dT cTds

dvT 

dT cdvT 

 P T dT cTds

v P 

v

v

 P 

 P 

 P 

 P 

 P 

v

v

v

β 

κ 

β 

β 

κ 

β 

+=     ∂∂

+     ∂∂

=

−=   

  ∂∂−=

+=   

  ∂∂

+=

• 6iven these definitions, it can be shown that

the ombined st  " #nd  Laws 'TdS) can be

written in at least the following ways!

• Student e$ercise to show that starting with the previous

Page 40: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 40/41

 +nternal 1nergy

u'T,O): 

dv P 

v

udT cTds

dvvudT 

T udu

v

T v

 

 

 

 

∂+=

   

  ∂∂+ 

  

  ∂∂=

 1nthal&y

h'T,P):

Student e$ercise to show that, starting with the previous

e$pressions ' using the definitions (per mole of internal

energy u ' enthalpy h gives!

• Student e$ercise also to show that similar manipulations

Page 41: Lecture 05

7/17/2019 Lecture 05

http://slidepdf.com/reader/full/lecture-05-568bef1800b38 41/41

v

v

v

vvvvv

 P v

 P 

c

 P 

 s

 P 

 sT 

T  P 

 s

 P 

 s

dvv

 sdP 

 P 

 sds

v P  s s

   

  ∂∂

=   

  ∂∂

   

  ∂∂

   

  ∂∂

=   

  ∂∂

   

  ∂∂

=   

  ∂∂

   

  ∂∂

+   

  ∂∂

=

=

1

,( *onsider

 P 

 P 

 P 

 p P  P  P  P 

 P v

v

c

v

 s

v

 sT 

T v

 s

v

 s

dv

v

 sdP 

 P 

 sds

   

  ∂∂

=   

  ∂∂

   

  ∂∂

   

  ∂∂

=   

  ∂∂

   

  ∂∂

=   

  ∂∂

 

 

 

 

 

∂+ 

 

 

 

 

∂=

1

dvv

T cdP 

 P 

T cTds

dvv

cdP 

 P 

cds

dvv

 sdP 

 P 

 sds

 P 

 P 

v

v

 P 

 P 

v

v

 P v

   

  ∂∂+ 

  

  ∂∂=

   

  ∂∂

+   

  ∂∂

=

   

  ∂∂+ 

  

  ∂∂=

• Student e$ercise also to show that similar manipulations

give at least the following different e$pressions for the

molar entropy s!  1ntro&y s'T,O):