Lecture 01-11-2010

23
Mathematical Description of  Physical Phenomenon

Transcript of Lecture 01-11-2010

Page 1: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 1/23

Mathematical Description

 of 

 

Physical Phenomenon

Page 2: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 2/23

•  

expressed in

 mathematical

 form

 (usually

 

• A   equations possess a common  orm

 –  Identification of  the common form

 –  Help to

 construct

 a

 general

 solution

 procedure

Page 3: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 3/23

Page 4: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 4/23

Physical Phenomenon & Differential 

Equation

•  

 –  Frequently used

 as

 a

 dependent

 variable

 but

 not

 a

 

 –  Arises from more basic equations employing 

s ecific internal ener or s ecific enthal 

Page 5: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 5/23

Physical Phenomenon & Differential 

Equation

 –  ‘J’ any

 flux

 

dependent 

variable

 –  Balance over 

a control 

volume

Page 6: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 6/23

Physical Phenomenon & Differential 

Equation

•  

 –  A term

 expressed

 on

 unit

 volume

 basis

‘ ’ –   

 –  ‘rho’ is the density

 –  e pro uc  r o  n o  represen s  e amoun  o 

extensive property contained in CV

 – 

 relevant property per unit volume

Page 7: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 7/23

Physical Phenomenon & Differential 

Equation

• . . 

• Each term

 represent

 an

 influence

 on

 a

 unit

 

All the

 terms

 collectively

 imply

 a

 balance

 or

 conservation

Page 8: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 8/23

 

a e o  c ange o  mass o  c em ca  spec e per un   vo ume

Rate of  generation of  specie per unit volume (may be  –ve, +ve or zero

Convection flux carried by flow field ‘rho into u’

Diffusion 

flux caused

 by

 gradients

 of 

 mass

 fraction

Page 9: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 9/23

 

’  

Diffusion Coefficient

Page 10: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 10/23

 

For steady low‐velocity with negligible viscous dissipation,Specific enthalpy

Thermal 

conductivity

Temperature

Rate of  change of  enthalpyInfluent of  conduction heat transfer within fluid

Volumetric rate of  heat  eneration ‐ve, +ve or zero

Page 11: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 11/23

 

• Substitutin   and sim lification

• Setting velocity

 zero,

 gives

 steady

 state

 conduction

 equation

Page 12: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 12/23

 

Viscous term in addition to the first term

Momentum flux

Rate of  chan e of  momentum  x‐direction

Viscous term

 

Body force per unit volume

Page 13: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 13/23

The Turbulence‐Kinetic‐Energy 

Equation• From ‘two‐equation model’ of turbulence, the

equation of kinetic energy ‘k’ of the fluctuating motion

Diffusion coefficient for k Rate of  generation of  turbulence energy

Kinematic rate of  dissipation

Net source term

• Similar differential equation governs ‘epsilon’

Page 14: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 14/23

Page 15: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 15/23

 

•  

quantities (mass

 fraction,

 enthalpy,

 temperature,

 etc.

• A ro riate meanin   will be  iven to diffusion 

coefficient and source term

• Density may

 be

 related

 to

 mass

 fraction,

 

temperature, etc. via an equation (like equation of  

state)

• Flow field

 should

 satisfy

 continuity

 equation

Page 16: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 16/23

 

•   . . 

can be

 represented

 in

 Cartesian

‐tensor

 form

• Subscript ‘j’

 can

 take

 the

 values

 1,

 2,

 3,

 

denotin   the three s ace coordinates

Page 17: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 17/23

•   , 

summation of 

 three

 terms

 is

 implied

• One‐dimensional form can alwa s be obtained 

by dropping the subscript ‘j’

Page 18: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 18/23

 

•   . .  , 

convection and

 diffusion

 terms

 conform

 to

 

• More convenient to work with dimensionless 

Page 19: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 19/23

 

• G.D.E ‐ An extremel   im ortant conclusion‐‐‐‐‐‐

Recognize this!!!

• A time saving step

• Concern only with numerical solution of  G.D.E.

• Even with

 com uter

 ro ram,

 sufficient

 to

 write

 a

 

general sequence of  instructions for solving

• General purpose program can be developed

• Variables, initial

 &

 boundary

 conditions

 can

 be

 

adjusted for making the specific case

Page 20: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 20/23

 

•  

a stationary

 frame

 of 

 reference,

 but

 steady

 in

 

airplane

• Axisymmetric flow in a circular pipe appears 

to 

e‐

n a

 cartes an

 coor nate

 system

 ut

 is 2‐D in cylindrical polar coordinates

Page 21: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 21/23

‐ ‐ 

• ‐

influenced by

 changes

 in

 conditions

 on

 either

 side of  location

• One‐Way: conditions at a given location are 

influenced by

 changes

 in

 conditions

 on

 only

 one side of  location

• Time  – always one‐way coordinate

• Space  – mostly

 two

‐way,

 but

 may

 nearly

 

become one‐way in some conditions

Page 22: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 22/23

Computer Implications of  One‐Way 

Two‐Way

 Coordinates

• ‐

given situation,

 computer

 storage

 and

 

• Example

Page 23: Lecture 01-11-2010

8/8/2019 Lecture 01-11-2010

http://slidepdf.com/reader/full/lecture-01-11-2010 23/23

•  

to obey

 a

 generalized

 conservation

 principle

•   . . . 

equations can be addressed later on and different 

cases can be accommodated then after. 

• Things become simpler if  we make right selection 

‐ 

coordinates into

 one

‐way

 coordinates