Lect6_ImpedanceMatching

download Lect6_ImpedanceMatching

of 29

Transcript of Lect6_ImpedanceMatching

  • 8/7/2019 Lect6_ImpedanceMatching

    1/29

    431-618 ( 2011)

    Passive ComponentDesign & Simulation

    Dr. Bo YangLecture 6: Impedance Matching

  • 8/7/2019 Lect6_ImpedanceMatching

    2/29

    At a glance

    Last Class: Transmission Lines & SmithChartThis Class: Impedance Matching

    B. Yang 2431-618, the University of Melbourne

  • 8/7/2019 Lect6_ImpedanceMatching

    3/29

    At Z Smith chart, curve from point Ato pint C indicates impedance

    transformation from resistance 25 Ohm to inductive impedance (25

    +j25) Ohm

    At Y Smith chart, curve from point C to point D indicates admittance transformation from inductive admittance (20 - j20) mS to

    conductance 20 mS (50 Ohm) 0 . 5

    1 .

    0

    2 . 0

    3 . 0

    - 3

    . 0

    - 2. 0 - 0 .5

    1 -10.51.02.05.0

    B / Y = O

    - 0. 2

    B / Y O = 0 .2

    x

    C

    D

    G /

    Y O = 0 . 2

    -1 .0

    0. 5 2 .0

    3 . 0

    -

    3 . 0

    - 2 . 0

    - 1

    . 0

    - 0 . 5

    0.5 1.0 2.0 5.0 r

    x

    X / Z O = 0 .2

    X / Z O = - 0

    . 2

    -1

    C

    A1

    R /

    Z O

    = 0

    . 2

    1 .0

    431-618, the University of Melbourne 3B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    4/29

    C

    D A Y Smith chart

    provides transformation from point C to point D

    At combined Z-Y

    Smith chart:

    Z Smith chart provides

    transformation from

    point A to point C

    431-618, the University of Melbourne 4B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    5/29

    5

    Load MatchingWhat if the load cannot be made equal to Z o for some otherreasons? Then, we need to build a matching network so that thesource effectively sees a match load.

    0

    LZ

    sP

    0Z

    M

    Typically we only want to use lossless devices such as capacitors,inductors, transmission lines, in our matching network so that wedo not dissipate any power in the network and deliver all theavailable power to the load.

    431-618, the University of Melbourne 5B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    6/29

    6

    Matching Example

    0

    100sP 50Z0 M

    Match 100 load to a 50 system at 100MHz

    A 100 resistor in parallel would do the trick but of thepower would be dissipated in the matching network. We wantto use only lossless elements such as inductors andcapacitors so we dont dissipate any power in the matchingnetwork

    431-618, the University of Melbourne 6B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    7/29

    7

    Matching Example

    Add positiveimaginary admittanceto get to z=1+j0

    ImpedanceChart

    nH80L

    LMHz1002 j500.1 j0.1 j jx

    pF16 100

    nH80

    431-618, the University of Melbourne 7B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    8/29

    8

    Matching ExampleThis solution wouldhave also worked

    ImpedanceChart

    pF32

    100nH160

    431-618, the University of Melbourne 8B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    9/29

    Matching Bandwidth

    50 60 70 80 90 100 110 120 130 140 15040

    35

    30

    25

    20

    15

    10

    5

    0

    Frequency (MHz)

    R e

    f l e c t

    i o n

    C o e

    f f i c i e n

    t ( d B )

    pF16100

    nH80

    50 MHz

    150 MHz

    ImpedanceChart

    Because the inductor and capacitorimpedances change with frequency, thematch works over a narrow frequency

    range 431-618, the University of Melbourne 9B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    10/29

    10

    Single Stub Tuner

    Match 100 load to a 50 system at 100MHzusing two transmission lines connected in parallel

    0

    100t 1

    t 2

    431-618, the University of Melbourne 10B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    11/29

    11

    Single Stub TunerAdding length toCable 1 rotates thereflection coefficientclockwise.

    Enough cable isadded so that thereflection coefficientreaches the mirrorimage circle

    nS49.3

    MHz1003602251

    1

    1t

    t

    ImpedanceChart

    2511

    431-618, the University of Melbourne 11B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    12/29

    12

    Single Stub Tuner

    The stub is going tobe added in parallelso flip to theadmittance chart.

    The stub has to adda normalizedadmittance of 0.7 tobring the trajectory tothe center of the

    Smith Chart

    AdmittanceChart431-618, the University of Melbourne 12B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    13/29

    13

    Single Stub TunerAn open stub of zerolength has anadmittance=j0.0

    By adding enough

    cable to the openstub, the admittanceof the stub willincrease.

    70 degrees will give

    the open stub anadmittance of j0.7

    AdmittanceChart

    702

    nS97.0

    MHz100360270

    2

    2t

    t

    431-618, the University of Melbourne 13B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    14/29

    14

    Single Stub Tuner

    AdmittanceChart

    01003.5nS

    0.97nS

    431-618, the University of Melbourne 14B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    15/29

    15

    Single Stub Tuner

    AdmittanceChart

    01001.5nS

    1.4nS

    This solution wouldhave worked as well.

    431-618, the University of Melbourne 15B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    16/29

    50 60 70 80 90 100 110 120 130 140 1540

    35

    30

    25

    20

    15

    10

    5

    0

    Frequency (MHz)

    R e

    f l e c t

    i o n

    C o e

    f f i c i e n

    t ( d B )

    01003.5nS

    0.97nS

    Single Stub Tuner Matching Bandwidth

    Because the cable phase changeslinearly with frequency, the matchworks over a narrow frequency range

    50 MHz

    150 MHz

    Impedance

    Chart431-618, the University of Melbourne 16B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    17/29

    X 1

    X 2

    L-transformer

    R1 Z 1 X 1 R2 Z 2

    X 2

    Equivalence when Z 1 = Z 2 : 21

    21

    12

    12

    12

    1

    211

    22 X R X R

    j X R

    X R jX R

    221 1 Q R R 221 1 Q X X

    where Q = R 1 / X 1 = X 2 / R 2 - quality factor equal for series and parallel circuits

    Impedance parallel and series circuits

    431-618, the University of Melbourne 17B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    18/29

    For conjugate matching with reactance compensation :

    221 1 Q X X 2

    21 1 Q R R

    .1 /

    /

    21

    22

    11

    R RQ

    Q R X

    Q R X

    X 1

    X 2

    R2 Z in = R 1

    Input impedance Z in will be resistive and equal to R 1 when :

    where Q = R 1 / X 1 = X 2 / R 2 - quality factor equal for series and parallel circuits

    431-618, the University of Melbourne 18B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    19/29

    Matching with lumped elements

    Bandwidth properties

    Two L-type matching circuits

    2211

    2

    1

    22

    11

    / 1

    / 1

    /

    RQC

    Q R L

    R

    RQ

    RQ L

    RQC

    L2

    1 C 1 R2 R1

    C 2

    R2 L1

    a ). b).

    Resistance R 1connected to

    parallel reactive element must be

    greater than resistance R 2 connected to

    series reactive element

    Z in

    R1

    0.707 R1

    1 f / f 0 0

    2 f 0 0 / 2Q f f

    431-618, the University of Melbourne 19B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    20/29

    Matching with lumped elements

    - transformer

    for each L-transformer, resistances R 1 and R 2 are transformed to some intermediate resistance R 0 with value of R 0 < (R 1, R 2 )

    X 1

    X 3

    X 2

    X 3

    X 2 X 1

    X 1

    X 3

    R0 R1 X 2 R2

    X 3

    X 1

    X 3 R0 R1

    X 2

    R2 X 3

    Connection of two L-transformers

    T- transformer

    for same resistances R 1 and R 2 , T- and -transformers have better filtering properties, but narrower bandwidth compared with single L-transformer

    431-618, the University of Melbourne 20B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    21/29

    Matching with lumped elements

    -type matching circuits

    111 / RQC 222 / RQC

    212113 1 / QQQ R L

    1 1 211

    22 Q

    R

    RQ 1

    2

    121

    R

    RQ

    L3

    R1 C 1 R2 C 2

    widely used as matching circuit

    useful for interstage matching when active device input and

    output capacitances can be easily

    incorporated inside matching circuit

    provides significant level of harmonic suppression

    431-618, the University of Melbourne 21B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    22/29

    111 / Q R L 222 / RQC

    221223 1 / QQQ R L ,

    1 1 222

    11 Q

    R

    RQ 1

    1

    222

    R

    RQ

    Matching with lumped elements

    -type matching circuits

    111 / Q R L

    222 / RQC

    212223 / 1 QQ RQC

    1 1 211

    22 Q

    R

    RQ 1

    2

    121

    R

    RQ

    L3

    R1 L1 R2 C 2

    C 3

    R1 L1 R2 C 2

    431-618, the University of Melbourne 22B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    23/29

    Matching with lumped elements

    111 / 1 Q RC 222 RQ L

    222123 1 / Q RQQC

    1 1 221

    21 Q

    R RQ 1

    2

    122

    R R

    Q

    L2

    R1 R2 C 3

    C 1

    T-type matching circuits

    widely used as input,interstage and output matching

    circuits in high power amplifiers

    can incorporate active device lead and bondwire

    inductances within matching circuit

    provides significant level of harmonic suppression

    431-618, the University of Melbourne 23B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    24/29

    111 / 1 Q RC 222 RQ L

    212223 / 1 QQQ R L ,

    1 1 212

    12 Q R

    RQ 1

    1

    221

    R

    RQ

    L2

    R1 L3 R2

    C 1

    Matching with lumped elements

    T-type matching circuits

    L2

    R1 R2 C 3

    L1 111 RQ L 222 RQ L

    222213 1 / Q RQQC

    1 1 221

    21 Q R

    RQ 1

    2

    122 R

    RQ

    431-618, the University of Melbourne 24B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    25/29

    Matching with lumped elements Matching design example

    L3 + L in

    Rsource = R1

    Rin C 3

    L2 C in

    Z in

    C 1

    L1 C 2 R2 R3

    132-174 MHz 150 W MOSFET power amplifier:

    three-section input matching

    MHz152174132c f

    2.1 9.0in j Z

    Q = 152/(174 - 132) = 3.6

    in

    3

    3

    2

    2

    1 R R

    R R

    R R

    For R in = 0.9 Ohm and R 1 = 50 Ohm: R 3 = 3.5 Ohm, R 2 = 13 Ohm

    Q = 1.7

    Two low-pass and one high-pass L-sections

    431-618, the University of Melbourne 25B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    26/29

    Matching with transmission lines

    For conjugate matching with reactance compensation when Z S = Z in * :

    Transmission-line transformer

    For quarter-wave transmission line with = 90 :

    tan tan

    L0

    0L0in jZ Z

    jZ Z Z Z

    Z 0,

    Z L Z in Z S

    L20in / Z Z Z

    L

    j j

    Z Z

    2exp 12exp 1

    L

    L

    0

    in

    Impedance at input of loaded transmission line:

    L

    L

    0

    L

    1 1

    Z Z

    Input impedance for loaded transmission line with electrical length of , normalized to its characteristic impedance Z

    0 , can be found by rotating this impedance point clockwise by

    2 around Smith chart center point with radius L

    SL

    2S

    2SL

    2L

    2LS

    0 R R

    X R R X R R Z

    LSLS

    LS0

    1

    tan

    R X X R R R

    Z

    431-618, the University of Melbourne 26B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    27/29

    Matching with transmission lines For pure resistive source

    impedance Z S = R S :

    Z L Z S

    Z 01, /8 Z 02, /4 Z 03, /8

    0 tan tan 1 2L2 L2 020L R X Z Z X

    2L

    2LL0 X R Z Z

    L0

    0LS X Z

    Z R R

    For electrical length = 45

    Any load impedance can be transformed into real source impedance using /8-transformer whose impedance is equal to magnitude of load impedance

    To match any source impedance Z S and load impedance Z L, matching circuit can be designed with two /8-transformers

    and one /4-transformer

    L Z 0,

    < 90 C

    Z 0, < 90

    tan 0 Z

    L

    Lumped and transmission line single-frequency equivalence

    0

    tan

    Z C

    431-618, the University of Melbourne 27B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    28/29

    Conjugate matching: L-type transformer

    Second implicit equation : numerical or graphical solution

    Matching with transmission lines

    R1 Z 1C R2 Z in

    Z 0,

    21

    21

    1212

    12

    1

    211inin X R

    X R j X R

    X R jX R

    2in1 1 Q R R 2in1 1 Q X X Real and imaginary parts of

    tan tan

    20

    020in jR Z

    jZ R Z Z

    2220

    2

    220in tan

    tan 1

    R Z R Z R

    2220

    22

    20

    0intan

    tan

    R Z

    R Z Z X

    1 / RQC

    2202

    2

    22

    2

    0

    2

    2

    0

    2

    1

    sin / cos

    cos sin 1

    Z R

    Z R

    R Z

    R R

    where X 1 = -1/ C

    Matching for any ratio of

    R 1 /R 2

    431-618, the University of Melbourne 28B. Yang

  • 8/7/2019 Lect6_ImpedanceMatching

    29/29

    Matching design example 470-860 MHz 150 W LDMOSFET power amplifier:

    three-section input matching

    Q = 635/(860 - 470) = 1.63

    in

    3

    3

    2

    2

    1 R R

    R R

    R R

    For R in = 1.7 Ohm and R 1 = 50 Ohm: R 3 = 5.25 Ohm, R 2 = 16.2 Ohm

    Q = 1.2

    For Z 01= Z 02 = Z 03 = 50 Ohm 1 = 30

    , 2 = 7.5 , 3 = 2.4

    Matching with transmission lines

    MHz635860470c f

    3.1 7.1in j Z

    Lin Rsource = R1

    R in C 3 Z inC 2 R2 R3

    Z 03, 3

    in

    C 1

    Z 02, 2 Z 01, 1

    For 1 =

    2 =

    3 = 30

    Z01 = 50 Ohm Z 02 = 15 7 Ohm Z 03 = 5 1 Ohm

    431-618 the University of Melbourne 29B Yang