Lect03_Strain Transformation.ppt

download Lect03_Strain Transformation.ppt

of 22

Transcript of Lect03_Strain Transformation.ppt

  • 8/16/2019 Lect03_Strain Transformation.ppt

    1/22

    Dr. Wan Mohd Sabki Wan Omar

    Lecture 3:

    Strain Transformation

    EAT 115/4EAT 115/4

    Strength of MaterialsStrength of Materials

    1

  • 8/16/2019 Lect03_Strain Transformation.ppt

    2/22

    Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Plane Strain

    General state of strain at a point in a body isrepresented by 3 normal strains and 3

    shear strains .

    The normal and shear strain components will vary

    according to the orientation of the element.

    ( ) z  y x   ε ε ε   ( ) z  y x   γ  γ  γ    

    2

  • 8/16/2019 Lect03_Strain Transformation.ppt

    3/22

    Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    General Equations of Plane-Strain Transformation

    Strain#transfor"ation e$uationsStrain#transfor"ation e$uations

    θ γ  

    θ ε ε γ  

    θ γ  

    θ ε ε ε ε 

    ε 

    θ γ  

    θ ε ε ε ε 

    ε 

    2cos2

    2sin22

    2sin

    2

    2cos

    22

    2sin2

    2cos22

    ''

    '

    '

     xy y x y x

     xy y x y x

     y

     xy y x y x

     x

    +   

      

        −−=

    −−

    −+

    =

    +−

    ++

    =

    3

  • 8/16/2019 Lect03_Strain Transformation.ppt

    4/22

    Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    General Equations of Plane-Strain Transformation

    %rinci&al Strains%rinci&al Strains

    Ma'i"u" (n#%lane Shear StrainMa'i"u" (n#%lane Shear Straina!imum in-plane shear strain and associated

    average normal strain are as follow"

    22

    2,1222

     2tan    

      

     +  

     

      

        +±

    +=

    −=   xy y x y x

     y x

     xy

     p

    γ  ε ε ε ε ε 

    ε ε 

    γ  θ 

    2 , 

    222 

    2tan

    22

     plane-inmax  y x

    avg 

     xy y x

     xy

     y x

    ε ε ε 

    γ  ε ε γ  

    γ  

    ε ε θ 

    +=  

     

      

     +  

     

      

        −=

     

     

     

     

     

        −−=

    4

  • 8/16/2019 Lect03_Strain Transformation.ppt

    5/22

    Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.3 % differential element of material at a point is sub&ected to a state of plane strain

    defined by which tends to distort theelement. 'etermine the ma!imum in-plane shear strain at the point and the

    associated orientation of the element.

    Solution"

    (oo)ing at the orientation of the element*

    +or ma!imum in-plane shear strain*

    ( ) ( ) ( )666 1080,10200,10350   −−− ==−=   xy y x   γ  ε ε 

    °°=⇒

       

         −−−= 

      

      

        −−=

    311and9.40 

    80

    2003502tan

     s

     xy

     y x

     s

    θ 

    γ  

    ε ε θ 

    ( ) (Ans) 10556 

    222

    6

     planeinmax

    22

     planeinmax

    −=⇒

       

      

     +  

     

      

        −=

    γ  

    γ  ε ε γ    xy y x

    5

  • 8/16/2019 Lect03_Strain Transformation.ppt

    6/22

    Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    ohr,s irclePlane Strain

    /e can also solve problems involving thetransformation of strain using ohr,s circle.

    0t has a center on the 1 a!is at point 21avg* $ and a

    radius R .

    22

    22 and 

    2

    we!e

      

     

     

     

     +  

     

     

     

        +=

    +=   xy y x y xavg    R

    γ  ε ε ε ε ε 

    ( ) 22

    ''2

    '2

     R y x

    avg  x   =  

     

     

     

     +−

      γ  ε ε 

    6

  • 8/16/2019 Lect03_Strain Transformation.ppt

    7/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.4The state of plane strain at a point is represented by the components

    'etermine the ma!imum in-plane shear strains and the orientation of an element.

    Solution"

    +rom the coordinates of point E * we have

    To orient the element*

    we can determine the cloc)wise angle*

    ( ) ( ) ( )666 10120,10150,10250   −−− =−==   xy y x   γ  ε ε 

    ( )( )

    ( )   ( )

    ( )6

    6

     planeinmax''

    6 planeinmax''

    1050 

    10418

    108.2082

    =

    =

    =

    avg 

     y x

     y x

    ε 

    γ  

    γ  

    ( )

    (Ans) ".36 

    35.82902

    1

    1

    °=

    °−°=

     s

     s

    θ 

    θ 

    7

  • 8/16/2019 Lect03_Strain Transformation.ppt

    8/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

     %bsolute a!imum Shear Strain

     Absolute maximum shear strain is found from thecircle having the largest radius.

    0t occurs on the element oriented 546 about the a!is

    from the element shown in its original position.

    2

    minmax

    minmaxmaxa#s

    ε ε ε 

    ε ε γ  

    +=

    −=

    avg 

    8

  • 8/16/2019 Lect03_Strain Transformation.ppt

    9/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

     %bsolute a!imum Shear Strain

    %lane Strain%lane Strain+or plane strain we have*

    This value represents the absolute maximum shear

    strain for the material.

    ( ) maxmax''maxa#s   ε γ  γ     ==   z  x ( ) minmaxmax''maxa#s   ε ε γ  γ     −==   y x

    9

  • 8/16/2019 Lect03_Strain Transformation.ppt

    10/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.7The state of plane strain at a point is represented by the strain components*

    'etermine the ma!imum in-plane shear strain and the absolute ma!imum shear

    strain.

    Solution"

    +rom the strain components* the centre of the circle is on the

    1 a!is at

    Since * the reference point has coordinates

    ( ) ( ) ( )666 10150,10200,10400   −−− ===   xy y x   γ  ε ε 

    ( ) ( )66 10100102

    200400   −− −−=+−

    =avg ε 

    ( )610"52

    −= xyγ  

    ( ) ( )( )66 10"5,10400   −−− A

    Thus the radius of the circle is

    ( )   ( ) ( )9622 1030910"5100400   −− =

    +−= R

    10

  • 8/16/2019 Lect03_Strain Transformation.ppt

    11/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    omputing the in-plane principal strains* we have

    Solution"

    +rom the circle* the ma!imum in-plane shear strain is

    ( ) ( ) ( )( )( ) ( )66min

    66

    max

    1040910309100

    1020910309100

    −−

    −−

    −=−−=

    =+−=

    ε 

    ε 

    ( )[ ]( ) ( ) (Ans) 1061810409209 66minmax planeinmax−− =−−=−=   ε ε γ  

    ( ) ( ) 10409,0, 10209 6minint6

    max

    −− −===   ε ε ε +rom the above results* we have

    Thus the ohr,s circle is as follows*

    11

  • 8/16/2019 Lect03_Strain Transformation.ppt

    12/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Strain 8osettes

    9ormal strain in a tension-test specimen can bemeasured using an electrical-resistance strain

    gauge.

    The strain-transformation equation for each gauge is

    as follow"

    cc xyc yc xc

    bb xyb yb xb

    aa xya ya xa

    θ θ γ  θ ε θ ε ε 

    θ θ γ  θ ε θ ε ε 

    θ θ γ  θ ε θ ε ε 

    cossinsincos

    cossinsincos

    cossinsincos

    22

    22

    22

    ++=

    ++=

    ++=

    12

  • 8/16/2019 Lect03_Strain Transformation.ppt

    13/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.:The state of strain at point A on the brac)et is measure using the strain rosette as

    shown. 'ue to the loadings* the readings from the gauge give 1a ;

  • 8/16/2019 Lect03_Strain Transformation.ppt

    14/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    aterial-Property 8elationships

    )enerali*ed +ooke,s La-)enerali*ed +ooke,s La-+or a tria!ial state of stress* the general form for

    @oo)e,s law is as follow"

    They are valid only for a linear–elastic  materials.

    @oo)e,s law for shear stress and shear strain is

    written as

    ( )[ ]   ( )[ ]   ( )[ ] y x z  z  z  x y y z  y x x   v E v E v E  σ σ σ ε σ σ σ ε σ σ σ ε    +−=+−=+−=

    1

     , 

    1

     , 

    1

     xz  xz  yz  yz  xy xyGGGτ γ  τ γ  τ γ  

    1===

    14

  • 8/16/2019 Lect03_Strain Transformation.ppt

    15/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    aterial-Property 8elationships

    elationshi& (noling E0elationshi& (noling E0 v v 0 and )0 and )

    Dilatation and ulk ModulusDilatation and ulk Modulus

    Dilatation* or volumetric strain* is caused only by

    normal strain* not shear strain.

    Bulk modulus is a measure of the stiffness of a

    volume of material.

    Plastic yielding occurs at v  ; $.4.

    ( )v

     E G

    +=

    12

    ( )v E k 213   −

    =

    15

  • 8/16/2019 Lect03_Strain Transformation.ppt

    16/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.#$The copper bar is sub&ected to a uniform loading along its edges. 0f it has a ; 3$$

    mm* b ; 4$$ mm* and t ; =$ mm before load is applied* find its new length* width*and thic)ness after application of the load. Ta)e

    Solution"+rom the loading we have

    The associated normal strains are determined from the generaliAed @oo)e,s law*

    34.0 , $%a120   ==   cucu   v E 

    0,80,&%a500,&%a800   ==−==   z  x y x   σ τ σ σ 

    ( )   ( )   ( ) 000850.0 , 00643.0 , 00808.0   −=+−=−=+−==+−=   y x z  z  z  x y

     y z  y x

     x E 

    v

     E  E 

    v

     E  E 

    v

     E σ σ 

    σ ε σ σ 

    σ ε σ σ 

    σ ε 

    The new bar length* width* and thic)ness are therefore

    ( )

    ( )( )

    ( )( ) (Ans) mm98.1920000850.020'

    (Ans) mm68.495000643.050'

    (Ans) mm4.30230000808.0300'

    =−+==−+==+=

    b

    a

    16

  • 8/16/2019 Lect03_Strain Transformation.ppt

    17/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Theories of +ailure

    +ailure for ductile material is by yielding * while brittle material is by fracture.

    Ductile MaterialsDuctile Materials

    +or yielding of a ductile material * it occurs along the

    contact planes.

    Maximum-shear-stress theory or Tresca yield

    criterion is used to predict the failure stress of aductile material sub&ected to any type of loading.

    17

  • 8/16/2019 Lect03_Strain Transformation.ppt

    18/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Theories of +ailure

    Ductile MaterialsDuctile Materials/ith reference from plane stress* the ma!imum-

    shear-stress theory for plane stress can be

    e!pressed for any two in-plane principal stresses.

    } sinsoppositeae, 

    sinssameae, 

    2121

    21

    2

    1

    σ σ σ σ σ 

    σ σ σ σ 

    σ σ 

    =−

    =

    =

    18

  • 8/16/2019 Lect03_Strain Transformation.ppt

    19/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Theories of +ailure

    Ductile MaterialsDuctile MaterialsThe energy per unit volume of material is called the

    strain-energy density .

    Bielding in a ductile material occurs when the

    distortion energy per unit volume of the material

    equals or e!ceeds the distortion energy per unit

    volume.

    0t is called the maximum-distortion-energy theory .

    22

    221

    2

    1   Y σ σ σ σ σ    =+−

    19

  • 8/16/2019 Lect03_Strain Transformation.ppt

    20/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Theories of +ailure

    rittle Materialsrittle MaterialsMaximum-normal stress theory states that a brittle

    material will fail when ma!imum principal stress is

    equal to the ultimate normal stress.

    lt2

    lt1

    σ σ 

    σ σ 

    =

    =

    20

  • 8/16/2019 Lect03_Strain Transformation.ppt

    21/22Dr. Wan Mohd SabkiDr. Wan Mohd Sabki

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    E!ample #$.#5The solid shaft has a radius of $.4 cm and is made of steel having a yield stress of σ

    = 3

  • 8/16/2019 Lect03_Strain Transformation.ppt

    22/22

    Lecture 1 !o"bined LoadingsLecture 1 !o"bined Loadings

    EAT115/Strength of MaterialsEAT115/Strength of Materials

    Solution"

    Since the principal stresses have opposite signs* the absolute ma!imum shear

    stress will occur in the plane*

    ( )

    3602.382 

    3606.2866.95

      21

    >

    ≤−−

    ≤−   Y σ σ σ 

    ( )

    ( )( ) ( )[ ]1296009.1186"" 

    3606.2866.2866.956.95

     

    222

    22

    221

    2

    1

    ≤−−−−

    ≤+−   Y σ σ σ σ σ 

    ?sing ma!imum-distortion-energy theory*

    Thus* shear failure of the material will occur according to this theory.

    ?sing this theory* failure will not occur.

    22