Leandra Boucheron Shpyrko Research Group July 19,...

37
Leandra Boucheron Shpyrko Research Group July 19, 2012

Transcript of Leandra Boucheron Shpyrko Research Group July 19,...

Page 1: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Leandra Boucheron

Shpyrko Research Group

July 19, 2012

Page 2: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Outline

Introduction

How and Why do Coffee Rings Form?

Manipulating Coffee Rings

Reversing the Effect

Particle Shape and Size

Other Factors

Conclusion

Page 3: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Coffee Ring Effect

What is the coffee ring effect?

Why do we care?

Page 4: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

The Two Sides of the Fence Minimize the effect Enhance the effect

Majumder, M., et al,, “Overcoming the ‘Coffee-Stain’ Effect by Compositional Marangoni-Flow-Assisted Drop-Drying.,” J. Phys. Chem. B, 116 (2012).

What causes the effect, and how can we manipulate it?

Magdassi, S., et al, “Ring Stain Effect at Room Temperature in Silver Nanoparticles Yields High Electrical Conductivity,” Langmuir 21 (2005).

Page 5: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Formation of Coffee Rings

Why do they form?

What is required?

Contact angle

Pinning

Evaporation

Deegan, R.D., et al., “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389 (1997).

Page 6: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Coffee Rings are a Geometrical Effect

Deegan, R.D., et al., “Contact line deposits in an evaporating drop,” Phys. Rev. E 62 (2000).

Page 7: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

What Causes the Pinning?

Surface Irregularities

Deposited Particles

Self-Pinning

Deegan, R.D., et al., “Pattern formation in drying drops,” Phys. Rev. E 61 (2000). Magdassi, S., et al, “Ring Stain Effect at Room Temperature in Silver Nanoparticles Yields High Electrical Conductivity,” Langmuir 21 (2005).

Water Droplet Radius as a Function of Time on an Atomically Flat Mica Surface

Page 8: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Droplet Size Criteria

Shen, X., et al., “Minimal Size of Coffee Ring Structure,” J. Phys. Chem. B, 114 (2010).

Page 9: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Reversing the Effect

Hu, H. and R.G. Larson, “Marangoni Effect Reverses Coffee-Ring Depositions”, J. Phys. Chem. B 110 (2006).

Page 10: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Marangoni Effect

Hu, H. and R.G. Larson, “Marangoni Effect Reverses Coffee-Ring Depositions”, J. Phys. Chem. B 110 (2006). Wikimedia Commons

Page 11: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Recirculatory Flows

Myspace.com

Page 12: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

What’s so different about water?

theory experiment

“The case of water is a long lasting story.”

Surface contaminants affect water surface tension

Savino, R., et al, “Buoyancy and Marangoni Effects in an Evaporating Drop,” J. Thermophys. Heat Transfer 16 (2002). Majumder, M., et al,, “Overcoming the ‘Coffee-Stain’ Effect by Compositional Marangoni-Flow-Assisted Drop-Drying.,” J. Phys. Chem. B, 116 (2012). Poulard, C., et al, “Diffusion-driven evaporation of sessile drops,” J. Phys.: Condens. Matter, 17 (2005).

Page 13: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

What is required?

Contact angle

Pinning

Evaporation

Minimum Droplet Size

Suppression of Marangoni Effect

How do particles arrange within the ring itself?

And Back to Coffee Ring Formation…

Page 14: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Order-to-Disorder Transition

Marín, A.G., et al., “Order-to-Disorder Transition in Ring-Shaped Colloidal Stains”, PRL 107 (2011).

Page 15: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

The Rush-Hour or Tetris Analogy

Marín, A.G., et al., “Order-to-Disorder Transition in Ring-Shaped Colloidal Stains”, PRL 107 (2011).

ConsttutA )()(

Radial Particle Velocity as a Function of Evaporation Time

Page 16: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

This isn’t quite the whole story…

Confinement

Voronoi Areas

Marín, A.G., et al., “Order-to-Disorder Transition in Ring-Shaped Colloidal Stains”, PRL 107 (2011). Pieranski, P., et al, “Thin Colloidal Crystals,” PRL 50 (1983).

Page 17: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Confinement Effects

Munich-touristik.com

Page 18: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

So how can we manipulate coffee rings?

Weon, B.M., and J.H. Je, “Capillary force repels coffee ring effect”, Phys Rev E 82, (2010).

Page 19: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Geometric Constraints

Weon, B.M., and J.H. Je, “Capillary force repels coffee ring effect”, Phys Rev E 82, (2010).

Page 20: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Health Care Application

Wong, T.S., et al., “Nanochromatography Driven by the Coffee Ring Effect”, Analytical Chemistry 83, (2011).

Page 21: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

What about the shape of the particles?

Yunker, P.J., et al, “Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature 476,(2011).

Page 22: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

…or is it the shape?

+ surfactant

Yunker, P.J., et al, “Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature 476,(2011).

Page 23: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

What’s actually going on here?

Yunker, P.J., et al, “Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature 476,(2011). Park, B.J., and E.M. Furst, “Attractive interactions between colloids at the oil-water interface,” Soft Matter 7 (2011). Vella, D., and L. Mahadevan, “The ‘Cheerios effect’,” Am. J. Phys. 73 (2005).

Page 24: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Non-Homogeneous Size/Shape Distribution

Yunker, P.J., et al, “Suppression of the coffee-ring effect by shape-dependent capillary interactions”, Nature 476,(2011).

Page 25: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Substrate Composition

Dou, R., and B. Derby, “Formation of Coffee Stains on Porous Surfaces,” Langmuir 28,(2012).

Page 26: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Temperature Control

Soltman, D., and V. Subramanian, “Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect,” Langmuir 24,(2008).

Page 27: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Electrowetting

Eral, H.B., et al, “Suppressing the coffee stain effect: how to control colloidal self-assembly in evaporating drops using electrowetting,” Soft Matter 7,(2011).

Page 28: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Conclusion Surface tension

Surfactants

Particle size

Particle shape

Solvent

Evaporation rate

Applied electric field

Temperature

Substrate Porosity

pH

Others?

Quantitative Predictive Model?

Page 29: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Backup Slides

Page 30: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

pH Control

Bhardwaj, R., et al, “Self-Assembly of Colloidal Particles from Evaporating Droplets: Role of DLVO Interactions and Proposition of a Phase Diagram,” Langmuir 26,(2010).

Page 31: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Silver Nanoparticle Rings

Magdassi, S., et al, “Ring Stain Effect at Room Temperature in Silver Nanoparticles Yields High Electrical Conductivity,” Langmuir 21 (2005).

Page 32: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Marangoni-Flow-Assisted Drop-Drying

Majumder, M., et al,, “Overcoming the ‘Coffee-Stain’ Effect by Compositional Marangoni-Flow-Assisted Drop-Drying.,” J. Phys. Chem. B, 116 (2012).

Page 33: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Evaporative Flux

2

10

22

2

J(r)

c

c

c

rR

Deegan, R.D., et al., “Capillary flow as the cause of ring stains from dried liquid drops”, Nature 389 (1997).

Page 34: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Evaporation Profiles

Deegan, R.D., et al., “Contact line deposits in an evaporating drop,” Phys. Rev. E 62 (2000).

Normal Evaporation

Surrounded by bath of water, water level at base of droplet

Inside chamber with small hole above droplet center

Page 35: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Minimal Droplet Size

Shen, X., et al., “Minimal Size of Coffee Ring Structure,” J. Phys. Chem. B, 114 (2010).

2

24

D

K

recedinginitial

evap

L

v ccDK

043

n

VL d

m

p

mparticle

D

L

2

2

r

TkD B

p6

evap

particle

RC

Page 36: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

Substrate Porosity

Dou, R., and B. Derby, “Formation of Coffee Stains on Porous Surfaces,” Langmuir 28,(2012).

Page 37: Leandra Boucheron Shpyrko Research Group July 19, 2012x-ray.ucsd.edu/mediawiki/images/8/86/RPC_Coffee_Rings.pdf · What’s so different about water? theory experiment òThe case

The Cheerios Effect

Vella, D., and L. Mahadevan, “The ‘Cheerios effect’,” Am. J. Phys. 73 (2005).