LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h...

34
Ryotaro ARITA (RIKEN) LDA+DMFT study for LiV 2 O 4 at T0 Phys. Rev. Lett. 98 166402 (2007)

Transcript of LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h...

Page 1: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

Ryotaro ARITA (RIKEN)

LDA+DMFT study for LiV2O4 at T→0

Phys. Rev. Lett. 98 166402 (2007)

Page 2: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

K. Held(Max Planck Institute, Stuttgart)

A.V. Lukoyanov(Ural State Technical Univ.)

V.I. Anisimov(Institute of Metal Physics)

Collaborators

Page 3: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Outline

Introduction LiV2O4: 3d heavy Fermion system

heavy (sharp) quasi-peak in A(w) for low T

Development of PQMC QMC for T→0 Application to DMFT calculation

Results LDA+DMFT(PQMC) for LiV2O4

Discussion Origin of HF behaviors

Page 4: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Crossover at T*~20K

・ resistivity: r =r0+AT2 with an enhanced A

・ specific heat coefficient: anomalously largeg(T→0)~190mJ/V mol・K2

(Kadowaki-Woods relation satisfied)

・ c: broad maximum (Wilson ratio~1.8)

cf) CeRu2Si2 ~350mJ/Ce mol・K2

UPt3 ~420mJ/U mol・K2

T*・・ onset of the formation of the heavy mass quasiparticles(m*~25mLDA)

T*

(Urano et al. PRL85, 1052(2000))

LiV2O4: 3d heavy Fermion system

Incoherenet metal

FL(T2 law)

g(T→0)~190mJ/Vmol・K2

CW law at HT S=1/2 per V ion

Page 5: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

(Shimoyamada et al. PRL 96 026403(2006))

PhotoEmission Spectroscopy Magnetization curves(Niitaka et al. ‘06)

A sharp peak appearsfor T<26K

w=4meV, D~10meV

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

M (m

B/f.u

.)

6050403020100H (T)

H//110 1.3K 4.2K 10K 20K 30K

LiV2O4: 3d heavy Fermion system

Page 6: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Kondo scenario

• Anisimov et al, 99• Eyert et al, 99• Matsuno et al, 99• Kusunose et al, 00• Lacroix, 01

• Shannon, 01 • Fulde et al, 01• Burdin et al, 02• Hopkinson et al, 02• Fujimoto, 02

Geometrical Frustration

hybridization→Kondo?

Hund

• Tsunetsugu, 02• Yamashita et al, 03• Laad et al, 03• Nekrasov et al, 03• Yushankhai et al, 07

Anisimov et al, PRL 83 364(1999)

a1g(localized)

eg(itinerant)

Theoretical studies so far

Short range (local) correlationsbecome dominant⇒ DMFT expected to be a good approx.

T=750K

LDA+DMFT by Nekrasov et al, PRB 67 085111 (2003)

Calculation forT→0

Page 7: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

LDA+DMFT Successful beyond-LDA method

Applications to various strongly correlated materials

Solver for the effective impurity model QMC (Hirsch-Fye)

Numerically exact Restricted to high T

(Numerically expensive for Low Teffort ~ 1/T3)

Development of Projective QMC for T→0 and its application to LDA+DMFT calculations for LiV2O4

S(w)

Impurity model

Lattice model

LDA+DMFT(QMC)

DMFT

Page 8: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Purpose

Reproduce the sharp (heavy) quasi-particle peak in A(w) at T→0 by LDA+DMFT(PQMC)

Clarify the origin of HF behaviors

(Shimoyamada et al. PRL 96 026403(2006))

Page 9: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

1 2

1 2

1 2

..., ...

... : arbitrary operator L

L

L

s s ss s s

s s sA

ZA A

Zá ñ = á ñå

Suzuki-Trotter decomposition

Hubbard-Stratonovich transformation for Hint

Many-particle system = (free one-particle system + auxiliary field)

1 2

1 2

......

L

L

ss sss s

Z Z= å 0

1 2 ...1

12

Tr [ ]l

L

LH s n

s s sl

LZ e es

st ls

s

- D

=

º Õ Õ

0 intL

l 1= ( 1/ )Tr Tr HHH T LZ e e e ttb b t-D-D-

== = D= Õ

12( )

1

( )[ ] 12s

U s n nn n n ne et l ­ ¯- +

­ ¯ ­ ¯-D -= å (cosh( ) exp[ /2])Ul t= D

Monte Carlo sampling

å

= å

Auxiliary-field QMC

Page 10: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

0<t1,t2<b=1/T, b=LDt

Projective QMC

Finite-T QMC for the Anderson impurity model (Hirsch-Fye 86)

Projective QMC for T=0

Size of G =L2

Effort ~L3

(calculation for low T is numerically expensive)

†1 2 1 2

{ } { } 1 2{ }

( , ) ( ) ( )

( , )p p

s ss

G T c c

w Gt s st t t t

t t

= -

= å

Integrate out the conduction bandsand calculate G of the impurity

Calculate G{s}(t1,t2) from G0(t1,t2)

Feldbacher, KH, Assaad, PRL 93 136405(2004)

Page 11: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

0<t1,t2<b=1/T, b=LDt

Projective QMC

Finite-T QMC for the Anderson impurity model (Hirsch-Fye 86)

Projective QMC for T=0

Size of G =L2

Effort ~L3

(calculation for low T is numerically expensive)

†1 2 1 2

{ } { } 1 2{ }

( , ) ( ) ( )

( , )p p

s ss

G T c c

w Gt s st t t t

t t

= -

= å

Integrate out the conduction bandsand calculate G of the impurity

Calculate G{s}(t1,t2) from G0(t1,t2)

Feldbacher, KH, Assaad, PRL 93 136405(2004)

Page 12: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

0<t1,t2<b=1/T, b=LDt

Projective QMC

Finite-T QMC for the Anderson impurity model (Hirsch-Fye 86)

Projective QMC for T=0

Size of G =L2

Effort ~L3

(calculation for low T is numerically expensive)

†1 2 1 2

{ } { } 1 2{ }

( , ) ( ) ( )

( , )p p

s ss

G T c c

w Gt s st t t t

t t

= -

= å

Integrate out the conduction bandsand calculate G of the impurity

Calculate G{s}(t1,t2) from G0(t1,t2)

Feldbacher, KH, Assaad, PRL 93 136405(2004)

q b+ 0

InteractionIsing fields no interaction

tq

→∞ →∞

Page 13: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Projective QMC

Interaction U only in red part

for sufficiently large P:Accurate information onG for light red part

Page 14: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<q obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

Page 15: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<q obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

1/T

Page 16: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<qP obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

1/T

Page 17: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<q obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

1/TqP 1/T-qP

Calculate G only for t<qPLarge t: Extrapolation byMaximum Entropy Method

Page 18: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<q obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

1/TqP 1/T-qP

Calculate G only for t<qPLarge t: Extrapolation byMaximum Entropy Method

FAQ:Why can we discuss A(w→0)even if we do not calculateG(t→∞) explicitly?

Page 19: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

DMFT(PQMC)

PQMC

1 2( )G t t,1

01() ( ) )(i G i G iw w w- -S = -

( )( )( )n n

DG i di i

ew e

w m w e=

+ - S -ò1 1

0 ( ) ( ) ( )G i G i iw w w- -= + S

0 1 2( )G t t,

1 ex( p( ))) (A dG t w wt wp

= -ò(( ) 1 )

nn d

iAG i w w

p ww

w=

Maximum Entropy Method

ProblemG(t)→FT→G(iw)? No

only G(t),t<q obtained by PQMC

(T=0)(T=0)

DMFT self-consistent loop

1/TqP 1/T-qP

Calculate G only for t<qPLarge t: Extrapolation byMaximum Entropy Method

Sufficiently large qP needed

FAQ:Why can we discuss A(w→0)even if we do not calculateG(t→∞) explicitly?

Page 20: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

0 0

DMFT(PQMC)A

(w)

A(w

)

T→0

w0 w0

T>0

Page 21: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

0 0

DMFT(PQMC)A

(w)

A(w

)

T→0

w0

G(t

)

0 t

~exp(-wt0) G(t

)

0 t

Slow decay component

w0

T>0

Page 22: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Single-band Hubbard modelHF-QMC vs. PQMC

DMFT(PQMC)

M I

HF-QMC

insulating metallic

b=16 b=40

Page 23: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Single-band Hubbard modelHF-QMC vs. PQMC

Convergence w.r.t q is much better than b

M I

PQMC

q=16 q=40

DMFT(PQMC)

Page 24: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Single-band Hubbard modelHF-QMC vs. PQMC

Convergence w.r.t q is much better than b

M I

PQMC

q=16 q=40

DMFT(PQMC)Orbital selective Mott transition in the two-orbital Hubbard model

DCA(PQMC) study for anisotropicpairing in the t-t’ Hubbard model

RA and KH, PRB 73 064515(2006)

RA and KH, PRB 72 201102(2005)

Page 25: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

12 (=4x3) band Hamiltonian

egp

a1g

egp

a1g

Hij(k)=

8 (=4x2) band model

Hij(k)=

DMFT self-consistent eq.

hybridization (Hij, i≠j) taken into account explicitly

ne/V=1.5

Effective low energy Hamiltonian

Page 26: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

LDA+DMFT Result (T=1200K, HF-QMC)

U=3.6, U’=2.4, J=0.6

U U’ U’-J Hund coupling = Ising

a1g

egp

Page 27: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

U=3.6, U’=2.4, J=0.6

U U’ U’-J Hund coupling = Ising

LDA+DMFT Result (T=300K, HF-QMC)

a1g

egp

Page 28: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

U=3.6, U’=2.4, J=0.6

U U’ U’-J Hund coupling = Ising

LDA+DMFT Result (T=0, PQMC)

a1g

egp

Page 29: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

LDA+DMFT Result (T=0, PQMC)

Page 30: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Kondo scenario

• Anisimov et al, 99• Eyert et al, 99• Matsuno et al, 99• Kusunose et al, 00• Lacroix, 01

• Shannon, 01 • Fulde et al, 01• Burdin et al, 02• Hopkinson et al, 02• Fujimoto, 02

Geometrical Frustration

hybridization→Kondo?

Hund

• Tsunetsugu, 02• Yamashita et al, 03• Laad et al, 03• Nekrasov et al, 03• Yushankhai et al, 07

Anisimov et al, PRL 83 364(1999)

a1g(localized)

eg(itinerant)

Theoretical studies so far

Short range (local) correlationsbecome dominant⇒ DMFT expected to be a good approx.

T=750K

LDA+DMFT by Nekrasov et al, PRB 67 085111 (2003)

Calculation forT→0

Page 31: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

hybridization→Kondo?

DMFT self-consistent eq.

a1g-egp hybridization not considered explicitly

Kondo coupling between a1g and egp

not reason for peak above EF

Effect of a1g-egp hybridization

Page 32: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Origin of the peak: a1g =slightly doped Mott insulator ?

Th. Pruschke et al, PRB 47 3553 (1993)

DMFT for the single band Hubbardn=0.97 (U=4)

na1g ~ 0.95na1g~ neg

LDA LDA+DMFT

Page 33: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Origin of the peak: a1g =slightly doped Mott insulator ?

Th. Pruschke et al, PRB 47 3553 (1993)

DMFT for the single band Hubbardn=0.97 (U=4)

na1g ~ 0.95na1g~ neg

LDA LDA+DMFT

Question:Strong renormalization can survivethe presence of short-range correlationbeyond DMFT?

cf) A.Toschi, A. Katanin, K. Held (PRB 75 045118 (2007))DGA study for cubic lattice

Damping of the peak:Irrelevant for 3D frustrated lattice(?)

Page 34: LDA+DMFT study for LiV2O4 at T 0corpes07/BEITRAEGE/arita.pdfLiV2O4: 3d heavy Fermionsystem I n c o h e r e n e t m e t a l FL(T2law) g(T →0 )~190mJ/Vmol・K2 CW law at HT S=1/2 per

R.AritaR.Arita

Development of PQMC and its application to LDA+DMFT calculations for LiV2O4

Origin of the sharp peak just above EF

a1g = slightly doped Mott Insulator

Future problems beyond-DMFT

Conclusions